This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000396 Perfect numbers n: n is equal to the sum of the proper divisors of n. (Formerly M4186 N1744) 410

%I M4186 N1744

%S 6,28,496,8128,33550336,8589869056,137438691328,2305843008139952128,

%T 2658455991569831744654692615953842176,

%U 191561942608236107294793378084303638130997321548169216

%N Perfect numbers n: n is equal to the sum of the proper divisors of n.

%C A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (this entry), deficient if sigma(n) < 2n (cf. A005100), where sigma(n) is the sum of the divisors of n (A000203).

%C The numbers 2^(p-1)(2^p - 1) are perfect, where p is a prime such that 2^p - 1 is also prime (for the list of p's see A000043). There are no other even perfect numbers and it is believed that there are no odd perfect numbers.

%C Numbers n such that Sum_{d|n} 1/d = 2. - _Benoit Cloitre_, Apr 07 2002

%C For number of divisors of a(n) see A061645(n). Number of digits in a(n) is A061193(n). - _Lekraj Beedassy_, Jun 04 2004

%C All entries other than the first have digital root 1 (since 4^2 == 4 (mod 6), we have, by induction, 4^k == 4 (mod 6), or 2*2^(2*k) = 8 == 2 (mod 6) implying that Mersenne primes M = 2^p - 1, for odd p, are of the form 6*t+1. Thus perfect numbers N, being M-th triangular, have the form (6*t+1)*(3*t+1), whence the property N mod 9 = 1 for all N after the first. - _Lekraj Beedassy_, Aug 21 2004

%C The earliest recorded mention of this sequence is in Euclid's Elements, IX 36, about 300 BC. - _Artur Jasinski_, Jan 25 2006

%C The number of divisors of a(n) that are powers of 2 is equal to A000043(n), assuming there are no odd perfect numbers. The number of divisors of a(n) that are multiples of n-th Mersenne prime A000668(n) is also equal to A000043(n), again assuming there are no odd perfect numbers. - _Omar E. Pol_, Feb 28 2008

%C Theorem (Euclid, Euler). An even number n is a perfect number if and only if n = 2^(k-1)*(2^k-1), where 2^k-1 is prime. Euler's idea came from Euclid's Proposition 36 of Book IX (see Weil). It follows that every even perfect number is also a triangular number. - _Mohammad K. Azarian_, Apr 16 2008

%C Triangular numbers (also generalized hexagonal numbers) A000217 whose indices are Mersenne primes A000668, assuming there are no odd perfect numbers. - _Omar E. Pol_, May 09 2008, Sep 15 2013

%C Sum of first m positive integers, where m is the n-th Mersenne prime A000668(n), assuming there are no odd perfect numbers. - _Omar E. Pol_, May 09 2008

%C Hexagonal numbers A000384 whose indices are superperfect numbers A019279, assuming there are no odd perfect numbers and no odd superperfect numbers. - _Omar E. Pol_, Aug 17 2008

%C It appears that this sequence is equal to the numbers A006516 whose indices are the prime numbers A000043, assuming there are no odd perfect numbers. - _Omar E. Pol_, Aug 30 2008

%C From _Reikku Kulon_, Oct 14 2008: (Start)

%C A144912(2, a(n)) = 1;

%C A144912(4, a(n)) = -1 for n > 1;

%C A144912(8, a(n)) = 5 or -5 for all n except 2;

%C A144912(16, a(n)) = -4 or -13 for n > 1. (End)

%C Multiply-perfect numbers A007691 whose indices are the numbers A153800, assuming there are no odd perfect numbers. - _Omar E. Pol_, Jan 14 2009

%C If a(n) is even, then 2*a(n) is in A181595. - _Vladimir Shevelev_, Nov 07 2010

%C Except for 6, all even terms are of the form 30*k - 2 or 45*k + 1. - _Arkadiusz Wesolowski_, Mar 11 2012

%C a(4) = A229381(1) = 8128 is the "Simpsons's perfect number". - _Jonathan Sondow_, Jan 02 2015

%C Theorem (_Farideh Firoozbakht_): If m is an integer and both p and p^k-m-1 are prime numbers then x = p^(k-1)*(p^k-m-1) is a solution to the equation sigma(x) = (p*x+m)/(p-1). For example, if we take m=0 and p=2 we get Euclid's result about perfect numbers. - _Farideh Firoozbakht_, Mar 01 2015

%C The cototient of the even perfect numbers is square; in particular, if 2^p - 1 is a Mersenne prime, cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2. So, this sequence is a subsequence of A063752. - _Bernard Schott_, Jan 11 2019

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 19.

%D S. Bezuszka, Perfect Numbers, (Booklet 3, Motivated Math. Project Activities) Boston College Press, Chestnut Hill MA 1980.

%D Euclid, Elements, Book IX, Section 36, about 300 BC.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.

%D T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, pp. 196-202 Baywood NY 1998.

%D Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)

%D J. Sandor, Handbook of Number Theory, II, Springer Verlag, 2004.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D I. Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81 Belin-Pour La Science, Paris 2000.

%D H. S. Uhler, On the 16th and 17th perfect numbers, Scripta Math. 19 (1953), 128-131.

%D André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p 6.

%D D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110 Penguin Books 1987.

%H E-Hern Lee, <a href="/A000396/b000396.txt">Table of n, a(n) for n = 1..15</a> (terms 1-14 from David Wasserman)

%H Anonymous, <a href="http://www-maths.swan.ac.uk/pgrads/bb/project/node3.html">Perfect Numbers</a> [broken link]

%H Anonymous, <a href="http://www-maths.swan.ac.uk/pgrads/bb/project/node43.html">Timetable of discovery of perfect numbers</a> [broken link]

%H Antal Bege, Kinga Fogarasi, <a href="http://arxiv.org/abs/1008.0155">Generalized perfect numbers</a>, arXiv:1008.0155 [math.NT], 2010.

%H R. P. Brent & G. L. Cohen, <a href="http://wwwmaths.anu.edu.au/~brent/pub/pub100.html">A new lower bound for odd perfect numbers</a>

%H R. P. Brent, G. L. Cohen & H. J. J. te Riele, <a href="http://wwwmaths.anu.edu.au/~brent/pub/pub106.html">A new approach to lower bounds for odd perfect numbers</a>

%H R. P. Brent, G. L. Cohen & H. J. J. te Riele, <a href="http://db.cwi.nl/rapporten/abstract.php?abstractnr=1802">Improved Techniques For Lower Bounds For Odd Perfect Numbers</a>

%H J. Britton, <a href="http://britton.disted.camosun.bc.ca/perfect/jbperfect.htm">Perfect Number Analyser</a>

%H C. K. Caldwell, <a href="http://primes.utm.edu/glossary/page.php?sort=PerfectNumber">Perfect number</a>

%H C. K. Caldwell, <a href="http://www.utm.edu/research/primes/mersenne/index.html">Mersenne Primes, etc.</a>

%H C. K. Caldwell, <a href="http://www.utm.edu/research/primes/notes/proofs/Theorem3.html">Iterated sums of the digits of a perfect number converge to 1</a>

%H J. A. B. Dris, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Dris/dris8.html">The Abundancy Index of Divisors of Odd Perfect Numbers</a>, J. Int. Seq. 15 (2012) # 12.4.4

%H Jason Earls, <a href="https://pdfs.semanticscholar.org/4559/ac50797ddeda688576630c4d92229440a0a3.pdf#page=243">The Smarandache sum of composites between factors function</a>, in Smarandache Notions Journal (2004), Vol. 14.1, page 243.

%H Bakir Farhi, <a href="http://arxiv.org/abs/1504.07322">On the representation of an even perfect number as the sum of a limited number of cubes</a>, arXiv:1504.07322 [math.NT], 2015.

%H Steven Finch, <a href="/A000396/a000396.pdf">Amicable Pairs and Aliquot Sequences</a>, 2013. [Cached copy, with permission of the author]

%H F. Firoozbakht, M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1.

%H J. W. Gaberdiel, <a href="http://math.arizona.edu/~ura/001/gaberdiel.jw/">A Study of Perfect Numbers and Related Topics</a>

%H T. Goto & Y. Ohno, <a href="http://www.ma.noda.tus.ac.jp/u/tg/perfect.html">Largest prime factor of an odd perfect number</a>

%H K. G. Hare, <a href="https://arxiv.org/abs/math/0501070">New techniques for bounds on the total number of Prime Factors of an Odd Perfect Number</a>, arXiv:math/0501070 [math.NT], 2005-2006.

%H A. Hoque, H. Kalita, <a href="http://www.naturalspublishing.com/files/published/1r9c4i46d2gg27.pdf">Generalized perfect numbers connected with arithmetic functions</a>, Math. Sci. Lett. 3, No. 3, 249-253 (2014).

%H C.-E. Jean, "Recreomath" Online Dictionary, <a href="http://www.recreomath.qc.ca/dict_parfait_nombre.htm">Nombre parfait</a>

%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1505.07229v3">The zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]

%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1610.07793 [math.NT], 2016.

%H T. Leinster, <a href="http://arXiv.org/abs/math.GR/0104012">Perfect numbers and groups</a>, arXiv:math/0104012 [math.GR], 2001.

%H A. V. Lelechenko, <a href="http://taac.org.ua/files/a2014/proceedings/UA-2-Andrew%20Lelechenko-440.pdf">The Quest for the Generalized Perfect Numbers</a>, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev.

%H Daniel Lustig, <a href="http://dx.doi.org/10.1016/j.jnt.2010.03.022">The algebraic independence of the sum of divisors functions</a>, Journal of Number Theory, Volume 130, Issue 11, November 2010, Pages 2628-2633.

%H T. Masiwa, T. Shonhiwa & G. Hitchcock, <a href="http://uzweb.uz.ac.zw/science/maths/zimaths/51/perfect.htm">Perfect Numbers & Mersenne Primes</a>

%H Mathforum, <a href="http://mathforum.org/dr.math/faq/faq.perfect.html">Perfect Numbers</a>

%H Mathforum, <a href="http://mathforum.org/library/drmath/view/51516.html">List of Perfect Numbers</a>

%H J. S. McCranie, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/mccranie.html">A study of hyperperfect numbers</a>, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.

%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#perfect">Perfect Numbers, Mersenne Primes</a>

%H D. Moews, <a href="http://djm.cc/amicable.html">Perfect, amicable and sociable numbers</a>

%H P. P. Nielsen, <a href="http://arxiv.org/abs/math/0602485">Odd Perfect Numbers Have At Least Nine Distinct Prime Factors</a>, arXiv:math/0602485 [math.NT], 2006.

%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>

%H J. J. O'Connor & E. F. Robertson, <a href="http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Perfect_numbers.html">Perfect Numbers</a>

%H J. O. M. Pedersen, <a href="https://web.archive.org/web/20141006120722/http://amicable.homepage.dk/perfect.htm">Perfect numbers</a> [Via Internet Archive Wayback-Machine]

%H J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link]

%H J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine]

%H J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only]

%H I. Peterson, <a href="http://www.maa.org/mathland/mathtrek_5_18_98.html">Cubes of Perfection</a>

%H Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.

%H P. Pollack, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pollack/pollack3.html">Quasi-Amicable Numbers are Rare</a>, J. Int. Seq. 14 (2011) # 11.5.2

%H D. Romagnoli, <a href="http://www.mistretta.eu/PDF/I%20numeri%20perfetti.pdf">Perfect Numbers (Text in Italian)</a> [From _Lekraj Beedassy_, Jun 26 2009]

%H D. Scheffler, R. Ondrejka, <a href="http://dx.doi.org/10.1090/S0025-5718-1960-0112239-6">The numerical evaluation of the eighteenth perfect number</a>, Math. Comp. 14 (70) (1960) 199-200

%H K. Schneider, PlanetMath.org, <a href="http://planetmath.org/encyclopedia/PerfectNumber.html">perfect number</a>

%H J. Sondow and K. MacMillan, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.124.3.232">Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation</a>, Amer. Math. Monthly, 124 (2017) 232-240; <a href="http://arxiv.org/abs/1812.06566">arXiv:math/1812.06566 [math.NT]</a>, 2018.

%H G. Villemin's Almanach of Numbers, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Decompos/SixNbPf.htm">Nombres Parfaits</a>

%H J. Voight, <a href="http://magma.maths.usyd.edu.au/~voight/notes/perfelem.pdf">Perfect Numbers:An Elementary Introduction</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectNumber.html">Perfect Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddPerfectNumber.html">Odd Perfect Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiperfectNumber.html">Multiperfect Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HyperperfectNumber.html">Hyperperfect Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Abundance.html">Abundance</a>

%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Perfect_number">Perfect number</a>

%H T. Yamada, <a href="http://arXiv.org/abs/math.NT/0511410">On the divisibility of odd perfect numbers by a high power of a prime</a>, arXiv:math/0511410 [math.NT], 2005-2007.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F The perfect number N = {2^(p-1)}*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N)=N^p), since tau(N) = 2p. - _Lekraj Beedassy_, Sep 21 2004

%F a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - _Omar E. Pol_, Feb 28 2008

%F a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - _Omar E. Pol_, Apr 23 2008

%F a(n) = A000217(A000668(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, May 09 2008

%F a(n) = Sum of first A000668(n) positive integers, assuming there are no odd perfect numbers. - _Omar E. Pol_, May 09 2008

%F a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n)= A000384(A061652(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, Aug 17 2008

%F a(n) = A006516(A000043(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, Aug 30 2008

%F a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - _Omar E. Pol_, Jan 09 2009

%F a(n) = A007691(A153800(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, Jan 14 2009

%F Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - _Lekraj Beedassy_, May 02 2009

%F a(n) = A060286(A016027(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, Dec 13 2012

%F For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - _Derek Orr_, Sep 28 2013

%F a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - _Daniel Poveda Parrilla_, Aug 16 2016

%e 6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.

%t Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* _G. C. Greubel_, Oct 03 2017 *)

%t PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 10 2018 *)

%o (PARI) isA000396(n) = (sigma(n) == 2*n);

%o (Haskell)

%o a000396 n = a000396_list !! (n-1)

%o a000396_list = [x | x <- [1..], a000203 x == 2 * x]

%o -- _Reinhard Zumkeller_, Jan 20 2012

%Y See A000043 for the current state of knowledge about Mersenne primes.

%Y Cf. A007539, A005820, A027687, A046060, A046061, A000668, A090748, A133033, A000217, A000384, A019279, A061652, A006516, A144912, A007691, A153800, A007593, A220290, A028499-A028502, A034916, A065549, A275496, A063752.

%K nonn,nice,core,changed

%O 1,1

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 14:40 EST 2019. Contains 319333 sequences. (Running on oeis4.)