Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2949 N1189 #61 Jan 05 2025 04:44:35
%S 0,1,3,13,71,465,3539,30637,296967,3184129,37401155,477471021,
%T 6581134823,97388068753,1539794649171,25902759280525,461904032857319,
%U 8702813980639617,172743930157869827,3602826440828270029,78768746000235327495,1801366114380914335441
%N a(n) = n*a(n-1) + (n-3)*a(n-2), with a(1) = 0, a(2) = 1.
%C With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=3 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, pp. 201-202. - _Jaap Spies_, Dec 12 2003
%C a(n+2)=:b(n), n>=1, enumerates the ways to distribute n beads, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and three indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as a beadless cords contribute each a factor 1 in the counting, e.g., b(0):= 1*1 =1. See A000255 for the description of a fixed cord with beads.
%C This produces for b(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and the sequence {A001710(n+2)}. See the necklaces and cords problem comment in A000153. Therefore also the recurrence b(n) = (n+2)*b(n-1) + (n-1)*b(n-2) with b(-1)=0 and b(0)=1 holds. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - _Wolfdieter Lang_, Jun 02 2010
%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A000261/b000261.txt">Table of n, a(n) for n=1..102</a>
%H Roland Bacher, <a href="https://doi.org/10.37236/2522">Counting Packings of Generic Subsets in Finite Groups</a>, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
%H Seok-Zun Song et al., <a href="http://dx.doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.
%F E.g.f.: exp(-x)/(1-x)^4 for offset -1.
%F For offset -1: (1/6)*Sum_{k=0..n} (-1)^k*(n-k+1)*(n-k+2)*(n-k+3)*n!/k! = (1/6)*(A000166(n)+3*A000166(n+1)+3*A000166(n+2)+A000166(n+3)). - _Vladeta Jovovic_, Jan 07 2003
%F a(n+1) = round( GAMMA(n)*(n^3+6*n^2+8*n+1)*exp(-1)/6 ) for n>0. - _Mark van Hoeij_, Nov 11 2009
%F G.f.: x^2*hypergeom([1,4],[],x/(x+1))/(x+1). - _Mark van Hoeij_, Nov 07 2011
%F E.g.f. for offset -1: 1/(exp(x)*(1-x)^4) = 1/E(0) where E(k) = 1 - 4*x/(1 + 3*x/(2 - 3*x + 4*x/(3 - 2*x + 3*x/(4 - x - 4/(1 + x^3*(k+1)/E(k+1)))))); (continued fraction, 3rd kind, 6-step). - _Sergei N. Gladkovskii_, Sep 21 2012
%F a(n) = hypergeometric([4,-n+2],[],1)*(-1)^n for n>=2. - _Peter Luschny_, Sep 20 2014
%e Necklaces and 3 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1,binomial(4,3)*sf(3)*c3(1), (binomial(4,2)*sf(2))*c3(2), and 1*c3(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c3(n):=A001710(n+2) = (n+2)!/2! numbers for the pure 3 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=3: 1/(1-x)^3). This adds up as 9 + 4*2*3 + (6*1)*12 + 360 = 465 = b(4) = A000261(6). - _Wolfdieter Lang_, Jun 02 2010
%e G.f. = x^2 + 3*x^3 + 13*x^4 + 71*x^5 + 465*x^6 + 3539*x^7 + 30637*x^8 + ...
%p a:= proc(n) a(n):= `if`(n<3, n-1, n*a(n-1) +(n-3)*a(n-2)) end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Nov 03 2012
%p a := n -> `if`(n=1,0,hypergeom([4,-n+2],[],1))*(-1)^(n); seq(round(evalf(a(n), 100)), n=1..22); # _Peter Luschny_, Sep 20 2014
%t nn=20;Prepend[Range[0,nn]!CoefficientList[Series[Exp[-x]/ (1-x)^4, {x,0,nn}],x],0] (* _Geoffrey Critzer_, Nov 03 2012 *)
%t a[ n_] := SeriesCoefficient[ x^2 HypergeometricPFQ[ {1, 4}, {}, x / (1 + x)] / (1 + x), {x, 0, n}]; (* _Michael Somos_, May 04 2014 *)
%t a[ n_] := If[ n < 2, 0, With[{m = n - 1}, Round[ Gamma[m] (m^3 + 6 m^2 + 8 m + 1) Exp[-1]/6]]]; (* _Michael Somos_, May 04 2014 *)
%Y Cf. A000255, A000153, A001909, A001910, A090010, A055790, A090012-A090016.
%Y Cf. A086764(n+1,3), n>=1.
%Y Cf. A000153 (necklaces and two cords). - _Wolfdieter Lang_, Jun 02 2010
%K nonn,changed
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, Jan 07 2003