Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1356 N0522 #469 Jun 28 2024 23:20:02
%S 0,2,5,9,14,20,27,35,44,54,65,77,90,104,119,135,152,170,189,209,230,
%T 252,275,299,324,350,377,405,434,464,495,527,560,594,629,665,702,740,
%U 779,819,860,902,945,989,1034,1080,1127,1175,1224,1274,1325,1377,1430,1484,1539,1595,1652,1710,1769
%N a(n) = n*(n+3)/2.
%C For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - _Robert G. Wilson v_
%C n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
%C n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
%C a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
%C For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - _Benoit Cloitre_, Aug 18 2002
%C Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - _Jon Wild_, May 07 2004
%C Coefficient of x^2 in (1 + x + 2*x^2)^n. - _Michael Somos_, May 26 2004
%C a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
%C Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - _Andrew S. Plewe_, Jun 18 2005
%C Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - _Alexander Adamchuk_, Apr 11 2006
%C Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
%C If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - _Milan Janjic_, Jul 30 2007
%C For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - _Camillia Smith Barnes_, Oct 04 2008
%C If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - _Gary Detlefs_, Mar 04 2010
%C The only primes are a(1) = 2 and a(2) = 5. - _Reinhard Zumkeller_, Jul 18 2011
%C a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - _Zak Seidov_, Jan 22 2012
%C For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - _Joerg Arndt_, Jun 24 2012
%C On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - _Jose Abutal_, Nov 19 2013
%C If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - _Michael Somos_, Nov 11 2015
%C a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - _Wolfdieter Lang_, Dec 10 2015
%C Numbers k such that 8k + 9 is a square. - _Juri-Stepan Gerasimov_, Apr 05 2016
%C a(n) = (n+1)^2 - A000124(n).- _Anton Zakharov_, Jun 29 2016
%C Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - _Gregory Gerard Wojnar_, Jul 19 2017
%C For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - _Felipe Pedraza-Oropeza_, Dec 07 2017
%C For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - _Felipe Pedraza-Oropeza_, Jan 11 2018
%C a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - _J. M. Bergot_, Jan 25 2018
%C Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - _Muniru A Asiru_, Jan 25 2018
%C a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - _Eric W. Weisstein_, Apr 11 2018
%C a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - _Omar E. Pol_, Sep 04 2018
%C For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - _Tom Copeland_, Jan 03 2021
%C For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - _Christian Barrientos_, Jun 13 2022
%C For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - _Zbigniew Wojciechowski_, Mar 31 2023
%C a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - _Nicholas Stefan Georgescu_, Jun 09 2024
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
%D Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
%D G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
%D D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Franklin T. Adams-Watters, <a href="/A000096/b000096.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H D. Applegate, R. Bixby, V. Chvatal and W. Cook, <a href="https://elibm.org/article/10011619">On the solution of traveling salesman problem</a>, In : Int. Congress of mathematics (Berlin 1998), Documenta Math., Extra Volume ICM 1998, Vol. III, pp. 645-656.
%H J.-L. Baril, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p178">Classical sequences revisited with permutations avoiding dotted pattern</a>, Electronic Journal of Combinatorics, 18 (2011), #P178.
%H Robert Davis and Greg Simay, <a href="https://arxiv.org/abs/2001.11089">Further Combinatorics and Applications of Two-Toned Tilings</a>, arXiv:2001.11089 [math.CO], 2020.
%H L. Euler, <a href="http://eulerarchive.maa.org/pages/E147.html">Sur une contradiction apparente dans la doctrine des lignes courbes</a>, Mémoires de l'Académie des Sciences de Berlin, 4, 219-233, 1750 Reprinted in Opera Omnia, Series I, Vol. 26. pp. 33-45.
%H Mareike Fischer, <a href="https://arxiv.org/abs/1801.10418">Extremal values of the Sackin balance index for rooted binary trees</a>, arXiv:1801.10418 [q-bio.PE], 2018.
%H Mareike Fischer, <a href="https://doi.org/10.1007/s00026-021-00539-2">Extremal Values of the Sackin Tree Balance Index</a>, Ann. Comb. (2021) Vol. 25, 515-541, Theorem 1.
%H A. Hanson and J. Sha, <a href="https://arxiv.org/abs/math-ph/0510064">A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6</a>, arXiv preprint arXiv:0510064 [math-ph], 2005.
%H F. T. Howard and Curtis Cooper, <a href="http://www.fq.math.ca/Papers1/49-3/HowardCooper.pdf">Some identities for r-Fibonacci numbers</a>, Fibonacci Quart. 49 (2011), no. 3, 231-243.
%H S. P. Humphries, <a href="http://www.math.byu.edu/~steve/">Home page</a>
%H S. P. Humphries, <a href="http://dx.doi.org/10.1016/S0166-8641(98)00007-8">Braid groups, infinite Lie algebras of Cartan type and rings of invariants</a>, Topology and its Applications, 95 (3) (1999) pp. 173-205.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1018">Encyclopedia of Combinatorial Structures 1018</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>
%H A. McLeod and W. O. J. Moser, <a href="http://www.jstor.org/stable/27642988">Counting cyclic binary strings</a>, Math. Mag., 80 (No. 1, 2007), 29-37.
%H Yashar Memarian, <a href="http://arxiv.org/abs/0910.2469">On the Maximum Number of Vertices of Minimal Embedded Graphs</a>, arXiv:0910.2469 [math.CO], 2009-15. [_Jonathan Vos Post_, Oct 14 2009]
%H Ângela Mestre and José Agapito, <a href="https://www.emis.de/journals/JIS/VOL22/Agapito/mestre8.html">A Family of Riordan Group Automorphisms</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
%H E. Pérez Herrero, <a href="http://psychedelic-geometry.blogspot.com/2009/09/binomial-matrix-i.html">Binomial Matrix (I)</a>, Psychedelic Geometry Blogspot 09/22/09. [_Enrique Pérez Herrero_, Sep 22 2009]
%H T. Manneville and V. Pilaud, <a href="http://arxiv.org/abs/1501.07152">Compatibility fans for graphical nested complexes</a>, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
%H P. Moree, <a href="https://arxiv.org/abs/math/0311205">Convoluted convolved Fibonacci numbers</a>, arXiv:math/0311205 [math.CO], 2003.
%H P. Moree, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Moree/moree12.htm">Convoluted Convolved Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H Maria J. Rodriguez, <a href="http://www.kias.re.kr/etc_img/bbs_file/KNE_2010/KNE_2010_29.pdf">Black holes in all</a>, The KIAS Newsletter, Vol.3, pp.29-34, Korea Institute for Advanced Study, Dec. 2010.
%H C. Rossiter, <a href="http://noticingnumbers.net/300SeriesCube.htm">Depictions, Explorations and Formulas of the Euler/Pascal Cube</a>.
%H E. Sandifer, <a href="https://www.maa.org/sites/default/files/pdf/editorial/euler/How%20Euler%20Did%20It%2010%20Cramers%20Paradox.pdf">How Euler Did It: Cramer's Paradox</a>
%H N. J. A. Sloane, <a href="/A000096/a000096.pdf">How to cut an annulus into 9 pieces with three cuts.</a>
%H Ben Sparks and Brady Haran, <a href="https://www.youtube.com/watch?v=ULhRLGzoXQ0">The Math of Being a Greedy Pig</a>, Numberphile video, 2021.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cramer-EulerParadox.html">Cramer-Euler Paradox</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IrredundantSet.html">Irredundant Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>
%H G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, <a href="http://arxiv.org/abs/1706.08381">Universal Peculiar Linear Mean Relationships in All Polynomials</a>, arXiv:1706.08381 [math.GM], 2017.
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
%F Connection with triangular numbers: a(n) = A000217(n+1) - 1.
%F a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
%F a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - _Jon Perry_, Jul 23 2003
%F a(-3-n) = a(n). - _Michael Somos_, May 26 2004
%F 2*a(n) = A008778(n) - A105163(n). - _Creighton Dement_, Apr 15 2005
%F a(n) = C(3+n, 2) - C(3+n, 1). - _Zerinvary Lajos_, Dec 09 2005
%F a(n) = A067550(n+1) / A067550(n). - _Alexander Adamchuk_, May 20 2006
%F a(n) = A126890(n,1) for n > 0. - _Reinhard Zumkeller_, Dec 30 2006
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Paul Curtz_, Jan 02 2008
%F Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Jul 03 2008
%F For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - _K.V.Iyer_, Apr 27 2009
%F A002262(a(n)) = n. - _Reinhard Zumkeller_, May 20 2009
%F Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - _Milan Janjic_, Jul 08 2010
%F a(n) = Sum_{k=1..n} (k+1)!/k!. - _Gary Detlefs_, Aug 03 2010
%F a(n) = n(n+1)/2 + n = A000217(n) + n. - _Zak Seidov_, Jan 22 2012
%F E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - _Peter Bala_, Mar 14 2012
%F a(n) = binomial(n+3, 2) - (n+3). - _Robert G. Wilson v_, Mar 15 2012
%F a(n) = A181971(n+1, 2) for n > 0. - _Reinhard Zumkeller_, Jul 09 2012
%F a(n) = A214292(n+2, 1). - _Reinhard Zumkeller_, Jul 12 2012
%F G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Sep 27 2012
%F A023532(a(n)) = 0. - _Reinhard Zumkeller_, Dec 04 2012
%F a(n) = A014132(n,n) for n > 0. - _Reinhard Zumkeller_, Dec 12 2012
%F a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - _Vladimir Kruchinin_, Jun 06 2013
%F a(n) = 2n - floor(n/2) + floor(n^2/2). - _Wesley Ivan Hurt_, Jun 15 2013
%F a(n) = Sum_{i=2..n+1} i. - _Wesley Ivan Hurt_, Jun 28 2013
%F Sum_{n>0} 1/a(n) = 11/9. - _Enrique Pérez Herrero_, Nov 26 2013
%F a(n) = Sum_{i=1..n} (n - i + 2). - _Wesley Ivan Hurt_, Mar 31 2014
%F A023531(a(n)) = 1. - _Reinhard Zumkeller_, Feb 14 2015
%F For n > 0: a(n) = A101881(2*n-1). - _Reinhard Zumkeller_, Feb 20 2015
%F a(n) + a(n-1) = A008865(n+1) for all n in Z. - _Michael Somos_, Nov 11 2015
%F a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - _Wolfdieter Lang_, Dec 10 2015
%F a(n) = (n+1)^2 - A000124(n). - _Anton Zakharov_, Jun 29 2016
%F Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - _Ilya Gutkovskiy_, Jun 30 2016
%F a(n) = 2*A000290(n+3) - 3*A000217(n+3). - _J. M. Bergot_, Apr 04 2018
%F a(n) = Stirling2(n+2, n+1) - 1. - _Peter Luschny_, Jan 05 2021
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - _Amiram Eldar_, Jan 10 2021
%F From _Amiram Eldar_, Jan 20 2021: (Start)
%F Product_{n>=1} (1 + 1/a(n)) = 3.
%F Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
%e G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
%p A000096 := n->n*(n+3)/2; seq(A000096(n), n=0..50);
%p A000096 :=z*(-2+z)/(z-1)**3; # _Simon Plouffe_ in his 1992 dissertation
%t Table[n*(n+3)/2, {n, 0, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Oct 25 2008 *)
%t LinearRecurrence[{3,-3,1}, {0,2,5}, 60] (* _Harvey P. Dale_, Apr 30 2013 *)
%o (PARI) {a(n) = n * (n+3)/2}; \\ _Michael Somos_, May 26 2004
%o (PARI) first(n) = Vec(x*(2-x)/(1-x)^3 + O(x^n), -n) \\ _Iain Fox_, Dec 12 2017
%o (Haskell)
%o a000096 n = n * (n + 3) `div` 2
%o a000096_list = [x | x <- [0..], a023531 x == 1]
%o -- _Reinhard Zumkeller_, Feb 14 2015, Dec 04 2012
%o (Magma) [n*(n+3)/2: n in [0..60]]; or [n: n in [0..2300] | IsSquare(8*n+9)]; // _Juri-Stepan Gerasimov_, Apr 05 2016
%o (GAP) a := List([0..1000], n -> n*(n+3)/2); # _Muniru A Asiru_, Jan 25 2018
%Y Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
%Y Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
%Y Cf. A000124, A000217, A005581-A005584, A023531, A034856, A067550, A127672 (Chebyshev C).
%Y Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
%Y Similar sequences are listed in A316466.
%Y Cf. A033282, A111785, A126216, A133437.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_