This site is supported by donations to The OEIS Foundation.
Primes of the form (a^n+b^n)/(a+b) and (a^n-b^n)/(a-b)
Primes of the form and
- There are many sequences in the OEIS dealing with primes of these forms. They are summarized below.
- Consideration here is limited to integers a, b, n >= 0.
- Note that F is a Fermat number when a=2, b=-1 and n is a power of 2.
- Note that M is a Mersenne number when a=2 and b=1.
- Thus, these forms may be considered generalized Mersenne and Fermat numbers.
- Studies have been reported when b=1 for both the F and M forms. See Links below.
The sections labeled "Sequences Related to F" and "Sequences Related to M" contain tables indicating the OEIS sequence that list the values of n where F or M is prime (or a probable prime) for the specified values of a and b. These tables also include those entries that have few or no values of n and thus do not have an OEIS sequence.
The sections "Properties of F" and "Properties of M" lists some properties that can be shown using elementary algebra. The most interesting are those that show M and F can be prime only if n is prime. There is at least one exception: F can be prime when a,b are not coprime and n is a power of two. Also, there are several conjectures that provide an opportunity for those that want to provide proofs.
Contents
Sequences Related to F
a | b=a-1 | b=1 | b=2 | b=3 | b=4 | b=5 |
---|---|---|---|---|---|---|
1 | none | none | A000978 | A007658 | only n=3 | A057171 |
2 | A000978 | A000978 | none | A057469 | none | A082387 |
3 | A057469 | A007658 | A057469 | none | A128066 | A122853 |
4 | A128066 | only n=3 | none | A128066 | none | A128335 |
5 | A128335 | A057171 | A082387 | A122853 | A128335 | only n=2 |
6 | A128336 | A057172 | none | none | none | A128336 |
7 | A187805 | A057173 | A125955 | A128067 | A218373 | A128337 |
8 | A181141 | none | none | A128068 | none | A128338 |
9 | A187819 | A057175 | A125956 | none | A211409 | A128339 |
10 | A217095 | A001562 | none | A128069 | none | none |
11 | A185239 | A057177 | A125957 | A128070 | A224501 | A128340 |
12 | A213216 | A057178 | none | none | none | A128341 |
13 | A225097 | A057179 | A222265 | A128071 | A213176 | A128342 |
14 | A224984 | A057180 | none | A128072 | none | A128343 |
15 | A221637 | A057181 | A225191 | none | A227049 | none |
16 | A227170 | A057182 | none | A128073 | none | A225397 |
17 | A228573 | A057183 | A224507 | A228225 | A228558 | A227046 |
18 | A227171 | A057184 | none | none | none | A228130 |
19 | A225818 | A057185 | A228922 | A128075 | A231329 | A229612 |
20 | A057186 | none | none | |||
21 | A057187 | none | ||||
22 | A057188 | none | none | |||
23 | A057189 | |||||
24 | A057190 | none | none | none | ||
25 | A057191 | none | ||||
26 | A071380 | none | none | |||
27 | none | none | ||||
28 | A071381 | none | none | |||
29 | n=7, ? | |||||
30 | A071382 | none | none | none | none | |
31 | A126856 | |||||
32 | none | none | none | |||
33 | A185230 | none | ||||
34 | n=3, ? | none | none | |||
35 | A185240 | none | ||||
36 | A229145 | none | none | none | ||
37 | 5,7,2707, ... | |||||
38 | A229524 | none | none | |||
39 | A230036 | none | ||||
40 | A229663 | none | none | none | ||
41 | 17,691, ... | |||||
42 | A231604 | none | none | none | ||
43 | A231865 | |||||
44 | 7,41233, ... | none | none | |||
45 | 103,157,37159, ... | none | none | |||
46 | A235683 | none | none | |||
47 | A236167 | |||||
48 | A236530 | none | none | none | ||
49 | A237052 | |||||
50 | 1153,26903,56597, ... | none | none | none |
Sequences Related to M
a | b=a-1 | b=1 | b=2 | b=3 | b=4 | b=5 |
---|---|---|---|---|---|---|
1 | none | none | A000043 | A028491 | only n=2 | A004061 |
2 | A000043 | A000043 | none | A057468 | none | A082182 |
3 | A057468 | A028491 | A057468 | none | A059801 | A121877 |
4 | A059801 | only n=2 | none | A059801 | none | A059802 |
5 | A059802 | A004061 | A082182 | A121877 | A059802 | none |
6 | A062572 | A004062 | none | none | none | A062572 |
7 | A062573 | A004063 | A215487 | A128024 | A213073 | A128344 |
8 | A062574 | only n=3 | none | A128025 | none | A128345 |
9 | A059803 | none | A173718 | none | only n=2 | A128346 |
10 | A062576 | A004023 | none | A128026 | none | none |
11 | A062577 | A005808 | A210506 | A128027 | A216181 | A128347 |
12 | A062578 | A004064 | none | none | none | A128348 |
13 | A062579 | A016054 | A217320 | A128028 | A224691 | A128349 |
14 | A062580 | A006032 | none | A128029 | none | A128350 |
15 | A062581 | A006033 | A225955 | none | A241921 | none |
16 | A062582 | only n=2 | none | A128030 | none | A128351 |
17 | A062583 | A006034 | A225807 | A128031 | A230139 | A128352 |
18 | A188051 | A133857 | none | none | none | A128354 |
19 | A062585 | A006035 | A229542 | A128032 | A228076 | A128354 |
20 | A062586 | A127995 | none | 2,43, ... | none | none |
21 | A062587 | A127996 | none | |||
22 | A062588 | A127997 | none | none | ||
23 | A062589 | A204940 | ||||
24 | A214658 | A127998 | none | none | none | |
25 | A214655 | none | none | |||
26 | A062592 | A127999 | none | none | ||
27 | A062593 | only n=3 | none | |||
28 | A062594 | A128000 | none | none | ||
29 | A062595 | A181979 | ||||
30 | A062596 | A098438 | none | none | none | none |
31 | A062597 | A128002 | ||||
32 | A062598 | none | none | none | ||
33 | A062599 | A209120 | none | |||
34 | A062600 | A185073 | none | none | ||
35 | A062601 | 313,1297, ... | none | |||
36 | A215535 | only n=2 | none | none | none | |
37 | A062603 | A128003 | ||||
38 | A062604 | A128004 | none | none | ||
39 | A062605 | A181987 | none | |||
40 | A062606 | A128005 | none | none | none | |
41 | A062607 | A239637 | ||||
42 | A062608 | 2,1319, ... | none | none | none | |
43 | A062609 | A240765 | ||||
44 | A215632 | 5,31,167, ... | none | none | ||
45 | A062611 | A242797 | none | none | ||
46 | A062612 | A243279 | none | none | ||
47 | A062613 | 127,18013,39623, ... | ||||
48 | 58543, ... | A245237 | none | none | none | |
49 | A062615 | none | only n=2 | |||
50 | A062616 | A245442 | none | none | none | |
51 | A062617 | none | ||||
52 | A062618 | none | none | |||
53 | A062619 | A173767 | ||||
54 | A062620 | none | none | none | ||
55 | A062621 | none | ||||
56 | A062622 | none | none | |||
57 | A062623 | none | ||||
58 | 5,25633, ... | none | none | |||
59 | A062625 | |||||
60 | A062626 | none | none | none | none | |
61 | 54517, ... | |||||
62 | A062628 | none | none | |||
63 | A062629 | none | ||||
64 | A062630 | none | none | none | ||
65 | A062631 | none | ||||
66 | A062632 | none | none | none | ||
67 | A062633 | |||||
68 | 3,251, ... | none | none | |||
69 | A062635 | none | ||||
70 | A062636 | none | none | none | ||
71 | A062637 | |||||
72 | A062638 | none | none | none | ||
73 | A062639 | |||||
74 | A062640 | none | none | |||
75 | A062641 | none | none | |||
76 | A062642 | none | none | |||
77 | A062643 | |||||
78 | A062644 | none | none | none | ||
79 | A062645 | |||||
80 | A062646 | none | none | none | ||
81 | A062647 | none | none | none | ||
82 | A062648 | none | none | |||
83 | 331, ... | |||||
84 | A062650 | none | none | none | ||
85 | A062651 | none | ||||
86 | A062652 | none | none | |||
87 | 2,3,47, ... | none | ||||
88 | A062654 | none | none | |||
89 | A062655 | |||||
90 | A062656 | none | none | none | none | |
91 | A062657 | |||||
92 | A062658 | none | none | |||
93 | A062659 | none | ||||
94 | A062660 | none | none | |||
95 | A062661 | none | ||||
96 | A062662 | none | none | none | ||
97 | A062663 | |||||
98 | n=7, ? | none | none | |||
99 | A062665 | none | ||||
100 | A062666 | only n=2 | none | only n=2 | none | none |
Properties of F
Some trivial properties of F:
1) If a=b=0 then F is undefined.
2) F is a Fermat number () when a=2, b=-1 and n is a power of 2.
3) If n=0 then F is prime (F=2) only if a+b=1
4) If n=1 then F=1
5) If b=a then F is prime only if n=2 and a is prime.
- If n=0, F=1/a and cannot be prime.
- If n=1, F=1 and thus not prime.
- If n=2, F=a and is prime only if a is prime.
- If n>2, F has more than one factor of a and thus is not prime.
6) If a=0 or b=0 (but not both) then F is prime only if n=2 and a is prime.
Some nontrivial properties of F:
- The cases where a,b=0, a=b and n<2 have been explored above.
- And since a and b are commutative, there is no loss in generality in assuming that a>b>0 and n>1 in the properties below.
- The following identities are referenced below.
- (I1) If n>1 is odd:
- , where
- Note that if n>1 then and .
- (I2) If n>1 has an odd factor, then n=k*j with k odd and j a power of 2:
- , where
- Note that if n>1 then and .
7) If a>b>0 and n is odd and composite, F is not prime.
- Since n is composite it can be written as n=k*m. Since n is odd, k and m must both be odd, otherwise n would be even. And since the smallest composite odd integer is 9, m>=3 and k>=3. Using the identity (I1) twice:
- F has two integer factors greater than 1 and thus cannot be prime.
8) If a>b>0 and n is even but has an odd factor, F is not prime.
- Since n is composite it can be written as n=k*j, where j is a power of 2 and k is odd. And since the smallest composite even integer with an odd factor is 6, k>=3 and j>=2. Using the identity (I2):
- case 1) does not divide when is a power of 2, so is one factor of F.
- If divides , then is another factor of F. Thus F is not prime.
- case 2)If does not divide , then F is not an integer and thus not prime.
- Either way F is not prime.
9) If a>b>0, a,b coprime and n is a power of 2, F is not prime.
- When is a power of 2 and a,b coprime, does not divide , therefore F is not an integer.
- Example: If a=2, b=3, n=2 then F = (2^2+3^2)/(2+3) = (4+9)/5 = 13/5
10) If F is prime, a>b>0 and a,b coprime, n must be an odd prime.
- From 7) n cannot be odd and composite.
- From 8) n cannot be even and composite.
- From 9) n cannot be a power of 2.
- Therefore n must be odd and prime.
11) If a>b>0 and a,b not coprime, F may be prime.
- Let c=gcd(a,b), d=a/c, e=b/c then
- F is an integer if (a+b) divides .
- F is also an integer if . If so then .
- For F to be prime, (a+b) must cancel all but one of the factors in the numerator with the remaining factor being prime. There are three possibilities:
- 1) and is prime.
- 2) and is prime.
- 3) and is prime, where .
- Note also, that given 7) and 8) above, n must be a power of two.
a | b | n | c | a+b | d^n+e^n | h | F |
---|---|---|---|---|---|---|---|
6 | 2 | 2 | 2 | 8 | 10 | 2 | 5 |
6 | 3 | 2 | 3 | 9 | 5 | 1 | 5 |
15 | 3 | 2 | 3 | 18 | 26 | 2 | 13 |
18 | 14 | 4 | 2 | 32 | 8962 | 2 | 4481 |
88 | 40 | 2 | 8 | 128 | 146 | 2 | 73 |
270 | 242 | 8 | 2 | 512 | 156273767551462786 | 2 | 78136883775731393 |
12) Conjecture: If a,b are cubes, F is prime only when n=3.
13) Conjecture: If a=4 and b=1, F is prime only when n=3.
14) Conjecture: If a=29 and b=1, F is prime only when n=7.
15) Conjecture: If a=34 and b=1, F is prime only when n=3.
Properties of M
Some trivial properties of M:
1) M is a Mersenne number () when a=2 and b=1.
2) If b=a then M is undefined.
3) a and b are commutative.
4) If n=0 then M is zero.
5) If n=1 then M=1
6) If a=0 or b=0 (but not both) M is prime only if n=2 and a is prime.
- If n=0, M=1/a and cannot be prime.
- If n=1, M=1 and thus not prime.
- If n=2, M=a and is prime only if a is prime.
- If n>2, M has more than one factor of a and thus is not prime.
Some nontrivial properties of M:
- The cases where a=0, b=0, a=b and n<2 have been explored above.
- And since a and b are commutative from 3) above, there is no loss in generality in assuming that a>b>0 and n>1 in the properties below.
- The following identities are referenced below.
- (I1)
- (I2) If n>1:
- , where
- Note that if n>1 then , and .
- (I3) If n>1 is even:
- , where
- Note that if n>2 then , and .
- (I4) If n>1 is odd:
- , where
- Note that if n>1 then , and .
7) M is an integer. Using I2:
- is always an integer, thus M is always an integer.
8) If n>2 is composite, M is not prime.
- Since n is composite, let n=k*m. Using I2 twice:
- Thus M consists of two integer factors greater than 1 and thus not prime.
9) If n=2, M is prime only if (a+b) is prime.
- Using I1:
10) If n>2 and has no odd factor, M is not prime.
- If there is no odd factor, n must be a power of two and can be written where j>1. Using I1 repeatedly:
- This can be repeated on the first term until (a-b) is reached, cancelling the denominator. There are j other factors greater than one and thus M is not prime.
11) M can be prime only if n is prime.
- From 8) n cannot be composite and greater than 2.
- From 10) n cannot be a power of 2 greater than 2.
- From 9) n can be 2, but 2 is prime.
- Thus n must be prime.
12) Conjecture: If a,b are not coprime, M is not prime.
13) If a,b are both squares, M can be prime only if n=2 and (a+b) is prime.
- If n>2 is even then let n=2m, using I1 and I2:
- Thus M consists of two integer factors greater than 1 and thus not prime.
- If n>2 is odd. Let and . Since a and b are squares, c and d are integers. Using I1, I2, I4 and I1 again:
- Thus M consists of two integer factors greater than 1 and thus not prime.
- This leaves n=2, and using I1:
- Thus if a,b are squares, M is prime only if n=2 an (a+b) is prime.
14) Conjecture: If a=j^2, b=k^2, j>k, M is prime only when n=2.
15) Conjecture: If a=j^3, b=k^3, j>k, M is prime only when n=3.
16) Conjecture: If a=j^p, b=k^p, j>k, where p is any prime, M is prime only when n=p.
17) Conjecture: If a=j^m, b=k^m, j>k, where m is not a power of a prime, M is not prime.
Links
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner, Generalized Repunit Primes, Mathematics of Computation, Volume 61, Number 204, October 1993, pages 927-930.
- H H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H H. Lifchitz, Mersenne and Fermat primes field
- H Eric Weisstein's World of Mathematics, Repunit