|
|
A185073
|
|
Numbers n such that (34^n - 1)/33 is prime.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..5.
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
H. Lifchitz, Mersenne and Fermat primes field
P. Bourdelais,A Generalized Repunit Conjecture
|
|
MATHEMATICA
|
Select[Prime[Range[100]], PrimeQ[(34^#-1)/33]&]
|
|
PROG
|
(PARI) isok(n) = isprime((34^n-1)/33); \\ Michel Marcus, Mar 13 2016
(PARI) lista(nn) = for(n=1, nn, if(ispseudoprime((34^n - 1)/33), print1(n, ", "))); \\ Altug Alkan, Mar 13 2016
|
|
CROSSREFS
|
Cf. A028491, A004061, A004062, A004063, A004064, A004023, A005808, A016054, A006032, A006033, A006034, A006035, A098438, A127995-A128005.
Sequence in context: A242562 A201357 A220551 * A185193 A066457 A203515
Adjacent sequences: A185070 A185071 A185072 * A185074 A185075 A185076
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Robert Price, Mar 10 2012
|
|
EXTENSIONS
|
a(5)=125101 corresponds to a probable prime discovered by Paul Bourdelais, Nov 20 2017
|
|
STATUS
|
approved
|
|
|
|