login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266202
Weak Goodstein numbers: a(n) = g_n(n), where g_n(n) is the weak Goodstein function.
16
0, 0, 1, 2, 11, 21, 43, 69, 211, 389, 779, 1276, 2753, 3405, 4167, 5029, 12317, 21691, 42083, 68050, 234257, 279872, 331871, 390781, 458271, 533659, 618679, 713344, 831407, 953343, 1081455, 1222053, 2753231, 4634203, 8637959, 13483492, 49254279, 90224223, 102400127
OFFSET
0,4
COMMENTS
A nonnegative n in ordinary (depth-1) base-k representation is n rewritten as a linear combination k powers n = n_1*b^m_1 + ... + n_k*b^m_k where 0 < n_i < b and m_1 > ... > m_k >= 0.
For instance, the ordinary representation of 34 in base 3 is 3^3 + 2*3 + 1.
Let b_k(n) be the function that substitutes the bases of the base-k representation of n with the base k+1. E.g., b_3(34) = b_3(3^3 + 2*3 + 1) = 4^3 + 2*4 + 1 = 73.
Define the weak Goodstein function as: g_k(n) = b_(k+1)(g_(k-1)(n))-1, g_0(n) = n.
See example for instances.
Let n be a fixed nonnegative integer: Goodstein's theorem shows that the sequence g_k(n) eventually stabilizes and then decreases by 1 at each step until it reaches 0. Thereafter, all the values of g_k(n) < 0 are not part of the sequence.
By Goodstein's theorem we conclude that g_k(n) is a finite sequence.
LINKS
Googology Wiki, Weak Goodstein sequence, see below.
EXAMPLE
Find a(5) = g_5(5):
g_0(5) = 5;
g_1(5) = b_2(5)-1 = b_2(2^2+1)-1 = 3^2+1-1 = 9;
g_2(5) = b_3(3^2)-1 = 4^2-1 = 15;
g_3(5) = b_4(3*4 + 3)-1 = 3*5+3-1 = 17;
g_4(5) = b_5(3*5 + 2)-1 = 3*6 + 2-1 = 19;
g_5(5) = b_6(3*6 + 1)-1 = 3*7+1-1 = 21.
MATHEMATICA
g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, n], {n, 0, 38}] (* Michael De Vlieger, Mar 18 2016 *)
PROG
(PARI) a(n) = {if (n == 0, return (0)); wn = n; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; } \\ Michel Marcus, Feb 23 2016
(PARI) a(n) = {if (n == 0, return (0)); wn = n; for(k=2, n+1, vd = digits(wn, k); wn = fromdigits(vd, k+1) - 1; ); wn; } \\ Michel Marcus, Feb 19 2017
CROSSREFS
Cf. A266201 ("Strong" Goodstein numbers).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A266203: a(n) = k such that g_k(n)=0.
Sequence in context: A343450 A245500 A342945 * A113721 A127199 A085652
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Jan 22 2016
EXTENSIONS
More terms from Michel Marcus, Feb 23 2016
STATUS
approved