OFFSET
1,1
COMMENTS
The offset is 1 because the true offset would be 10^(4.085349171835445 * 10^369693099), which is too large to be written out in full in the OEIS or, for that matter, the Universe.
9^8^7^6^5^4^3^2^1^0 (mod 100000000) = 79806721; 9^8^7^6^5^4^3^2^1^0 = 10^10^10^10^(4.829261035877073 * 10^183230).
REFERENCES
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
Hans Havermann and Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Robert P. Munafo, Hyper4 Iterated Exponential Function
Robert P. Munafo and Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
FORMULA
9^(9^(9^9)) = ((((( ... 387420478 ... (((((9^9)^9)^9)^9)^9) ... 387420478 ... ^9)^9)^9)^9)^9)^9.
EXAMPLE
=2141983294796805611333364373442480830147227072845128488706516195982808749656704847036118447249917368...(4.085349171835445... * 10^369693099) ... 3771540670946945552331518959254852001991324340257630363975097419408973491530163140828233401045865289.
The first and last 100 digits are shown above, with the intervening digits omitted. The final one hundred digits cannot be computed with: PowerMod[9, 9^9^9, 10^100] with any version of Mathematica before version 9. Instead (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file and then *) SuperPowerMod[9, 4, 10^100].
MATHEMATICA
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 9, 9^9^9] (* needs version 9.0 to run *)
CROSSREFS
KEYWORD
AUTHOR
Hans Havermann and Robert G. Wilson v, Jun 14 2014
EXTENSIONS
Keyword: fini added by Jianing Song, Sep 18 2019
STATUS
approved