login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008776
Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
210
2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
OFFSET
0,1
COMMENTS
Definitions of Pisot and related sequences:
Pisot sequence E(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2) + 1/2) = nearest integer to a(n-1)^2/a(n-2), with 0 < x < y.
Pisot sequence L(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2)).
Pisot sequence P(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2) - 1/2).
Pisot sequence T(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)).
Pisot/Shallit sequence S(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)+1).
A025192 is the main entry for the sequence of numbers 2*3^n.
Number of tilings of a 4 X (4n+4) rectangle into T tetrominoes.
Numbers n such that 3^n = n/2 mod n. Cf. A066601 3^n mod n. - Zak Seidov, Aug 26 2006, Nov 20 2008
For n >= 1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) = A048473(n) + 1 = A048473(n) + A000012(n). a(n) = A052919(n+1)-1. a(n) = A115099(n) - 2. a(n) = A100774(n) + 2. See A007395. - Paul Curtz, Jan 20 2009
a(n+1) is the number of compositions of n when there are 2 types of each natural number. - Milan Janjic, Aug 13 2010
2*Sum_{n>=2} 1/A083667(n) = 2*Sum_{n>=2} 2^(-n)*3^(-((n*(n-1))/2)) = Sum_{n>=1} 1/Product_{k=1..n} A008776(k) = Sum_{n>=1} 1/Product_{k=1..n} 2*3^k = 0.17609845431233461692099660022134... . - Alexander R. Povolotsky, Aug 08 2011
Number of monic squarefree polynomials over F_3 of degree n+1. - Charles R Greathouse IV, Feb 07 2012
a(n) is the sum of the elements of the n-th power of the matrix {{1, 2}, {2, 1}}. - Griffin N. Macris, Mar 25 2016
Let D(m) denote the set of divisors of a number m, and consider s1(m) and s2(m) the sums of those divisors that are congruent to 1 and 2 (mod 3) respectively. This sequence lists the numbers m such that s1(m) = 1 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the multiplicative order of k modulo 3^(n+1), where k is any number congruent to 2 or 5 modulo 9. Note that for n > 0, k is a primitive root modulo 3^(n+1) if and only if k == 2, 5 (mod 9). - Jianing Song, Apr 20 2021
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..200
Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.
Tanya Khovanova, Recursive Sequences
C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scu. Norm. Sup. Pisa 2 ser, vol 7. no 3-4 (1938) p 205-248.
FORMULA
a(n) = 2*3^n.
a(n) = 3*a(n-1).
G.f.: 2/(1-3*x). - Philippe Deléham, Oct 08 2007
a(n-1) = phi(3^n). - Artur Jasinski, Nov 19 2008
E.g.f.: 2*exp(3*x). - Mohammad K. Azarian, Jan 15 2009
If p[i]=2, (i >= 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: ((1/2)/G(0)-1)/x^2 where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: -G(0)/x where G(k) = 1 - 1/(1-2*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-2)/(1 - x*(2*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
MAPLE
# E(x, y) is f(n, x, y, 1/2), T(x, y) is f(n, x, y, 0), and S(x, y) is f(n, x, y, 1).
f:=proc(n, x, y, r) option remember;
if n=0 then x
elif n=1 then y
else floor(f(n-1, x, y, r)^2/f(n-2, x, y, r) + r); fi; end;
[seq(f(n, 2, 6, 1/2), n=0..30)];
# N. J. A. Sloane, Jul 30 2016
MATHEMATICA
Table[EulerPhi[3^n], {n, 0, 100}] (* Artur Jasinski, Nov 19 2008 *)
Table[MatrixPower[{{1, 2}, {1, 2}}, n][[1]][[2]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
NestList[3#&, 2, 50] (* Harvey P. Dale, Nov 28 2022 *)
PROG
(PARI) a(n)=3^n<<1 \\ corrected by Michel Marcus, Aug 03 2015
(Haskell)
a008776 = (* 2) . (3 ^)
a008776_list = iterate (* 3) 2 -- Reinhard Zumkeller, Oct 19 2015
(Magma) [2*3^n: n in [0..30]]; // G. C. Greubel, Sep 11 2019
(Sage) [2*3^n for n in (0..30)] # G. C. Greubel, Sep 11 2019
(GAP) List([0..30], n-> 2*3^n); # G. C. Greubel, Sep 11 2019
CROSSREFS
Apart from initial term, same as A025192.
Cf. A080643.
Cf. A000244.
Sequence in context: A179349 A179355 A179362 * A025192 A134635 A192338
KEYWORD
easy,nonn
EXTENSIONS
Jasinski formula corrected by Charles R Greathouse IV, Feb 18 2011
STATUS
approved