login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085471
Triangle of coefficients of numerators of powers of e^2 in Sum_{k>=1} {1 / (1 + (k+1/2)^2*Pi^2)^n} + {4^n / (4+Pi^2)^n}.
0
1, -1, 1, -4, -1, 3, -17, -7, -3, 15, -94, -56, -58, -15, 105, -657, -578, -982, -503, -105, 945, -5584, -7291, -16824, -12901, -5464, -945, 10395, -55757, -106209, -303361, -313199, -202071, -70411, -10395, 135135, -634722, -1728758, -5846866, -7692464, -6715286, -3535066
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Infinite Series
EXAMPLE
{-1 + e^2, -1 - 4*e^2 + e^4, -3 - 7*e^2 - 17*e^4 + 3*e^6}
MATHEMATICA
q = FullSimplify[ TrigToExp[ Table[ (Sum[ 1/(1 + (k + 1/2)^2*Pi^2)^n, {k, Infinity} ] + 4^n/(4 + Pi^2)^n)*(n - 1)!*2^n*(E^2 + 1)^n, {n, 8} ] ] ]; Flatten[ Reverse/@(CoefficientList[ #, E^2 ]&/@q) ]
CROSSREFS
Sequence in context: A336693 A193793 A301510 * A064221 A229672 A298568
KEYWORD
sign,tabl
AUTHOR
Eric W. Weisstein, Jul 01 2003
STATUS
approved