login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A085471
Triangle of coefficients of numerators of powers of e^2 in Sum_{k>=1} {1 / (1 + (k+1/2)^2*Pi^2)^n} + {4^n / (4+Pi^2)^n}.
0
1, -1, 1, -4, -1, 3, -17, -7, -3, 15, -94, -56, -58, -15, 105, -657, -578, -982, -503, -105, 945, -5584, -7291, -16824, -12901, -5464, -945, 10395, -55757, -106209, -303361, -313199, -202071, -70411, -10395, 135135, -634722, -1728758, -5846866, -7692464, -6715286, -3535066
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Infinite Series
EXAMPLE
{-1 + e^2, -1 - 4*e^2 + e^4, -3 - 7*e^2 - 17*e^4 + 3*e^6}
MATHEMATICA
q = FullSimplify[ TrigToExp[ Table[ (Sum[ 1/(1 + (k + 1/2)^2*Pi^2)^n, {k, Infinity} ] + 4^n/(4 + Pi^2)^n)*(n - 1)!*2^n*(E^2 + 1)^n, {n, 8} ] ] ]; Flatten[ Reverse/@(CoefficientList[ #, E^2 ]&/@q) ]
CROSSREFS
Sequence in context: A336693 A193793 A301510 * A064221 A378592 A229672
KEYWORD
sign,tabl
AUTHOR
Eric W. Weisstein, Jul 01 2003
STATUS
approved