login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378234
From higher-order arithmetic progressions: Corrected version of A259461.
3
40, 5000, 472500, 43218000, 4148928000, 432081216000, 49509306000000, 6275893932000000, 881135508052800000, 136878615942868800000, 23474682634201999200000, 4432282735129048800000000, 918537831584839065600000000, 208281986149676045967360000000, 51516317681413623440962560000000
OFFSET
0,1
COMMENTS
Only the first 5 terms of A259461 are correct. - R. J. Mathar, Jul 14 2015
"2 over n!" on page 13 in the Dienger article is A006472; A_3 is A001303.
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
FORMULA
D-finite with recurrence: -2*n*(n+2)*a(n) + (n+4)^3*(n+5)*a(n-1) = 0.
a(n) = (n+5)!*(n+4)!^3 / (1296*2^(n+4)*n!^2*(n+2)*(n+1)).
MAPLE
rV := proc(n, a, d)
n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
end proc:
A259461 := proc(n)
mul(rV(i, a, d), i=1..n+3) ;
coeftayl(%, d=0, 3) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259461(n), n=1..5) ; # R. J. Mathar, Jul 14 2015
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Georg Fischer, Dec 16 2024
STATUS
approved