login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001303 Stirling numbers of first kind, s(n+3, n), negated.
(Formerly M4258 N1779)
14
6, 50, 225, 735, 1960, 4536, 9450, 18150, 32670, 55770, 91091, 143325, 218400, 323680, 468180, 662796, 920550, 1256850, 1689765, 2240315, 2932776, 3795000, 4858750, 6160050, 7739550, 9642906, 11921175, 14631225, 17836160, 21605760, 26016936, 31154200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is equal to the sum of the products of each distinct grouping of 3 members of the set {1, 2, 3, ..., n + 2} (a(1) = 1*2*3, a(2) = 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4, a(3) = 1*2*3 + 1*2*4 + 1*2*5 + 1*3*4 + 1*3*5 + 1*4*5 + 2*3*4 + 2*3*5 + 2*4*5 + 3*4*5). - Jeffreylee R. Snow, Sep 23 2013

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]

G. C. Greubel, A Note on Jain basis functions, arXiv:1612.09385 [math.CA], 2016.

Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = binomial(n+3, 4)*binomial(n+3, 2).

G.f.: x*(6 + 8*x + x^2)/(1 - x)^7. - Simon Plouffe in his 1992 dissertation

E.g.f. with offset 3: exp(x)*(6*(x^3)/3! + 26*(x^4)/4! + 35*(x^5)/5! + 15*(x^6)/6!). See row k=3 of A112486 for the coefficients [6, 26, 35, 15].

a(n) = (f(n+2, 3)/6!)*Sum_{m=0..min(3, n)} A112486(3,m)*f(6, 3-m)*f(n-1, m), with the falling factorials notation f(n, m):=n*(n-1)*...*(n-(m-1)).

From Jason Lang, Oct 03 2006: (Start)

a(n) = A000217 * n! / ( 4! * (n-4)! ) [for n > 4 and A000217 = the triangular numbers];

a(n) = ((n+4)! / n! ) ^2 / ( (n+2) * (n+1) * 2*4!);

a(n) = (n-0)^2 * (n-1)^2 * (n-2) * (n-3) / (2*4!). (End)

a(n) = numbperm(n,2)*numbperm(n,4)/48, n >= 4. - Zerinvary Lajos, Apr 26 2007

From Miklos Kristof, Nov 04 2007: (Start)

a(n) = 15*binomial(n+5,6) - 10*binomial(n+4,5) + binomial(n+3,4).

E.g.f. with offset 4: exp(x)*((1/4)*x^4 + (1/6)*x^5 + (1/48)*x^6). (End)

a(n) = n*(n+1)(n+2)^2*(n+3)^2/48. - Jeremy Galvagni (jgalvagni(AT)mohawkteachers.org), Mar 03 2009

From Gary Detlefs, Jun 06 2010: (Start)

a(n) = (n+3)^2/(n^2-1)*a(n-1), n > 1;

a(n) = 6*Product_{k=2..n} (k+3)^2/(k^2 - 1). (End)

a(n) = A001297(-3-n) for all n in Z. - Michael Somos, Sep 04 2017

MAPLE

seq(numbperm (n, 2)*numbperm (n, 4)/48, n=4..33); # Zerinvary Lajos, Apr 26 2007

seq(15*binomial(n+2, 6)-10*binomial(n+1, 5)+binomial(n, 4), n=4..30); # Miklos Kristof, Nov 04 2007

A001303 := proc(n)

    -combinat[stirling1](n+3, n) ;

end proc: # R. J. Mathar, May 19 2016

MATHEMATICA

Table[-StirlingS1[n + 3, n], {n, 100}] (* T. D. Noe, Jun 27 2012 *)

a[ n_] := n (n + 1) (n + 2)^2 (n + 3)^2 / 48; (* Michael Somos, Sep 04 2017 *)

PROG

(Sage) [stirling_number1(n, n-3) for n in xrange(4, 34)] # Zerinvary Lajos, May 16 2009

(PARI) a(n) = n*(n+1)*(n+2)^2*(n+3)^2/48; \\ Altug Alkan, Aug 29 2017

CROSSREFS

Cf. A001297, A008275.

Sequence in context: A062801 A035290 A138422 * A220887 A213807 A241781

Adjacent sequences:  A001300 A001301 A001302 * A001304 A001305 A001306

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000

Notation of the polynomial formula edited by R. J. Mathar, Sep 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 15:14 EDT 2017. Contains 293612 sequences.