login
A259459
From higher-order arithmetic progressions.
2
1, 18, 360, 9000, 283500, 11113200, 533433600, 30862944000, 2121827400000, 171160743600000, 16020645600960000, 1722947613266880000, 211061082625192800000, 29223842209642080000000, 4542220046298654720000000
OFFSET
0,2
LINKS
Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
FORMULA
Conjecture: -2*n*a(n) +(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjecture: g.f.: 3F0(4,3,3;;x/2). - R. J. Mathar, Aug 09 2015
MAPLE
rV := proc(n, a, d)
n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
end proc:
A259459 := proc(n)
mul(rV(i, a, d), i=1..n+1) ;
coeftayl(%, d=0, 1) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259459(n), n=1..15) ; # R. J. Mathar, Jul 14 2015
MATHEMATICA
rV[n_, a_, d_] := n(n+1)/2*a + (n-1)n(n+1)/6*d;
A259459[n_] :=
Product[rV[i, a, d], {i, 1, n+2}] //
SeriesCoefficient[#, {d, 0, 1}]& //
SeriesCoefficient[#, {a, 0, n+1}]&;
Table[A259459[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A182609 A320764 A086502 * A099276 A221348 A285400
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 30 2015
STATUS
approved