OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..428
FORMULA
a(n) ~ n! * 5^(1/6) * exp(-1/12 - 1/(20*Pi^2) - 3^(2/3)*n^(1/3) / (10^(1/3)*Pi^(4/3)) + 3^(4/3)*5^(1/3)*n^(2/3) / (2*Pi)^(2/3)) / (6^(1/3) * Pi^(5/6) * n^(2/3)).
a(n) ~ 10^(1/6) * exp(-1/12 - 1/(20*Pi^2) - 3^(2/3)*n^(1/3) / (10^(1/3)*Pi^(4/3)) + 3^(4/3)*5^(1/3)*n^(2/3) / (2*Pi)^(2/3)) * n^(n - 1/6) / (3^(1/3) * Pi^(1/3) * exp(n)).
E.g.f.: exp(Sum_{k>=1} A001615(k)*x^k).
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[Sum[k * Product[1 + 1/p, {p, Select[Divisors[k], PrimeQ]}] * x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 31 2024
STATUS
approved