login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376585
a(n) = 2^(2*n - 1) - 2^(n - 1)*(n - 1).
2
1, 2, 6, 24, 104, 448, 1888, 7808, 31872, 129024, 519680, 2086912, 8366080, 33505280, 134111232, 536641536, 2146992128, 8588886016, 34357510144, 137434234880, 549745852416, 2199002284032, 8796048982016, 35184279814144, 140737295417344, 562949550768128, 2251798974824448
OFFSET
0,2
FORMULA
a(n) = [x^n] (-10*x^2 + 6*x - 1)/((2*x - 1)^2*(4*x - 1)).
a(n) = ((24 - 8*n)*a(n - 2) + (6*n - 22)*a(n - 1)) / (n - 4) for n >= 5.
MAPLE
A376585 := n -> 2^(2*n - 1) - 2^(n - 1)*(n - 1):
MATHEMATICA
LinearRecurrence[{8, -20, 16}, {1, 2, 6}, 27] (* Hugo Pfoertner, Sep 29 2024 *)
CROSSREFS
Cf. A020522.
Sequence in context: A352364 A129817 A230797 * A128652 A152316 A177520
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Sep 29 2024
STATUS
approved