login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128652 Number of square permutations of length n. 2
1, 2, 6, 24, 104, 464, 2088, 9392, 42064, 187296, 828776, 3644912, 15937776, 69317984, 300009744, 1292654304, 5547021728, 23715100480, 101046014952, 429209373296, 1817975905456, 7680278380512, 32368750662320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..23.

Michael Albert, Steve Linton, Nik Ruskuc, Vincent Vatter, Steve Waton, On convex permutations, preprint.

Michael Albert, Steve Linton, Nik Ruskuc, Vincent Vatter, Steve Waton, On convex permutations, Discrete Mathematics, vol.311, pp.715-722, (2011).

A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7

Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, Arxiv preprint arXiv:1201.1323, 2012

T. Mansour and S. Severini, Grid polygons from permutations and their enumeration by the kernel method, arXiv:math/0603225 [math.CO], 2006.

FORMULA

a(n) = 2*(n+2) * 4^(n-3) - 4*(2*n-5) * C(2*n-6,n-3) for n>=2, a(1)=1.

G.f.: x*(1-6*x+10*x^2-4*x^2*sqrt(1-4*x))/(1-4*x)^2 (See theorem 3.1 in Albert et al. reference). [Joerg Arndt, Jun 21 2011]

PROG

(Pari) a(n) = if(n<=1, n, 2*(n+2) * 4^(n-3) - 4*(2*n-5) * binomial(2*n-6, n-3)); /* Joerg Arndt, Jun 21 2011 */

CROSSREFS

Sequence in context: A078486 A129817 A230797 * A152316 A177520 A152326

Adjacent sequences:  A128649 A128650 A128651 * A128653 A128654 A128655

KEYWORD

nonn

AUTHOR

Ralf Stephan, May 08 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 17 21:45 EDT 2014. Contains 246885 sequences.