login
A375948
Expansion of e.g.f. 1 / (3 - 2 * exp(x))^(3/2).
3
1, 3, 18, 153, 1683, 22698, 362403, 6683463, 139787568, 3269240883, 84535585263, 2394699999948, 73749495626253, 2453332830142743, 87667856626175298, 3349116499958627733, 136209377351085310863, 5875794769594996985778, 267968680043585007829383
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A001147(k+1) * Stirling2(n,k).
MATHEMATICA
nmax=18; CoefficientList[Series[1 / (3 - 2 * Exp[x])^(3/2), {x, 0, nmax}], x]*Range[0, nmax]! (* Stefano Spezia, Sep 03 2024 *)
PROG
(PARI) a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k+1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2024
STATUS
approved