login
A367470
Expansion of e.g.f. 1 / (3 - 2 * exp(x))^2.
7
1, 4, 28, 268, 3244, 47404, 810988, 15891628, 350851564, 8615761324, 232911898348, 6872755977388, 219799913877484, 7572909749244844, 279630706025296108, 11016315458773541548, 461211305514352065004, 20448268640012928321964
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 2^k * (k+1)! * Stirling2(n,k).
a(0) = 1; a(n) = 2*Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) - 3*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(k+1)!*stirling(n, k, 2));
CROSSREFS
Cf. A367474.
Sequence in context: A284756 A316144 A138272 * A361049 A372747 A245060
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 19 2023
STATUS
approved