login
A375558
Expansion of e.g.f. 1 / (1 + x * log(1 - x^4/24)).
2
1, 0, 0, 0, 0, 5, 0, 0, 0, 315, 6300, 0, 0, 150150, 6306300, 94594500, 0, 268017750, 17689171500, 549972423000, 7332965640000, 1283268987000, 117632990475000, 5681673439942500, 155840185781280000, 1961530116170625000, 1606200062942475000
OFFSET
0,6
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (n-4*k)! * |Stirling1(k,n-4*k)|/(24^k*k!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^4/24))))
(PARI) a(n) = n!*sum(k=0, n\4, (n-4*k)!*abs(stirling(k, n-4*k, 1))/(24^k*k!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 19 2024
STATUS
approved