login
A375560
Expansion of e.g.f. 1 / (1 - x * log(1 + x^4/24)).
1
1, 0, 0, 0, 0, 5, 0, 0, 0, -315, 6300, 0, 0, 150150, -6306300, 94594500, 0, -268017750, 17689171500, -549972423000, 7332965640000, 1283268987000, -117632990475000, 5681673439942500, -155840185781280000, 1934474528361375000, 1606200062942475000
OFFSET
0,6
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (n-4*k)! * Stirling1(k,n-4*k)/(24^k*k!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*log(1+x^4/24))))
(PARI) a(n) = n!*sum(k=0, n\4, (n-4*k)!*stirling(k, n-4*k, 1)/(24^k*k!));
CROSSREFS
Cf. A375557.
Sequence in context: A294393 A047754 A048682 * A375558 A186716 A331039
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 19 2024
STATUS
approved