login
A373358
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for a(0) = a(1) = 0, a(2) = 1, a(3) = 4 for n >= 4.
1
0, 0, 1, 4, 11, 26, 59, 136, 323, 782, 1903, 4620, 11175, 26970, 65051, 156944, 378811, 914566, 2208199, 5331476, 12871663, 31074802, 75020243, 181113240, 437244675, 1055602590, 2548453951, 6152518684, 14853499511, 35859517706, 86572518539, 209004522016, 504581529803, 1218167581622
OFFSET
0,4
FORMULA
G.f.: x^2 / ( (1 - 2*x - x^2) * (1 - 2*x + 2*x^2) ).
E.g.f.: exp(x)*(2*cosh(sqrt(2)*x) - 2*(cos(x)+sin(x)) + sqrt(2)*sinh(sqrt(2)*x))/6.
a(n) = A373245(n+1) - A114203(n+1).
a(0) = 0, a(n) = A373245(n-1) + A146559(n-1).
Binomial transform of 0, 0, followed by A077893 = abs(A077953) = abs(A077980).
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for n >= 4.
From Thomas Scheuerle, Jun 03 2024: (Start)
a(n) = (A000129(n+1) - A009545(n+1))/3.
a(n) = (-i*sqrt(2)*(1-i)^(n+1) + i*sqrt(2)*(1+i)^(n+1) - (1-sqrt(2))^(n+1) + (1+sqrt(2))^(n+1))/(6*sqrt(2)).
a(n) = 2^n*(hypergeom([1/2 - n/2, -n/2], [-n], -1) - hypergeom([1/2 - n/2, -n/2], [-n], 2))/3. (End)
MATHEMATICA
LinearRecurrence[{4, -5, 2, 2}, {0, 0, 1, 4}, 50] (* Paolo Xausa, Jun 19 2024 *)
PROG
(PARI) a(n) = ((([2, 1; 1, 0]^(n+1))[2, 1]) - (1+I)^(n-1) - (1-I)^(n-1))/3 \\ Thomas Scheuerle, Jun 03 2024
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 02 2024
STATUS
approved