login
A373245
Binomial transform of A135318.
1
1, 2, 4, 9, 22, 55, 136, 331, 798, 1919, 4620, 11143, 26906, 64987, 156944, 378939, 914822, 2208455, 5331476, 12871151, 31073778, 75019219, 181113240, 437246723, 1055606686, 2548458047, 6152518684, 14853491319, 35859501322, 86572502155, 209004522016
OFFSET
0,2
FORMULA
G.f.: (1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)). - Vaclav Kotesovec, May 29 2024
a(n) = A114203(n+1)/2. - Hugo Pfoertner, May 29 2024
E.g.f.: exp(x)*(2*cos(x) + 4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))/6. - Stefano Spezia, May 29 2024
MATHEMATICA
CoefficientList[Series[(1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, May 29 2024 *)
CROSSREFS
Cf. A135318.
Cf. A114203.
Sequence in context: A265023 A343291 A290996 * A198520 A115324 A196307
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 29 2024
EXTENSIONS
More terms from Vaclav Kotesovec, May 29 2024
STATUS
approved