login
A371229
E.g.f. satisfies A(x) = 1 - x*A(x)^2*log(1 - x*A(x)^2).
6
1, 0, 2, 3, 104, 630, 19944, 259560, 8718464, 185086944, 6914815200, 206059083120, 8700740615808, 332779651158240, 15916427365716864, 738672634596405600, 39847940942657495040, 2163098542598925281280, 130682368989193123952640
OFFSET
0,3
FORMULA
a(n) = n! * (2*n)! * Sum_{k=0..floor(n/2)} |Stirling1(n-k,k)|/( (n-k)! * (2*n-k+1)! ).
PROG
(PARI) a(n) = n!*(2*n)!*sum(k=0, n\2, abs(stirling(n-k, k, 1))/((n-k)!*(2*n-k+1)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 15 2024
STATUS
approved