login
A371226
Expansion of e.g.f. 1/(1 - x * (exp(x + x^2) - 1)).
1
1, 0, 2, 9, 52, 485, 4506, 53137, 699336, 10350153, 171116470, 3099723341, 61365024876, 1315416053965, 30365930429394, 751142777311305, 19817598092077456, 555552329932290449, 16489894938382046574, 516644525863694081413, 17038964994820269425460
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{j=0..n} Sum_{k=0..j} k! * binomial(j,n-j-k) * Stirling2(j,k)/j!.
PROG
(PARI) a(n) = n!*sum(j=0, n, sum(k=0, j, k!*binomial(j, n-j-k)*stirling(j, k, 2)/j!));
CROSSREFS
Sequence in context: A347774 A360718 A266469 * A367390 A080146 A074602
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 15 2024
STATUS
approved