login
A371232
E.g.f. satisfies A(x) = 1 - x*A(x)^4*log(1 - x*A(x)^3).
4
1, 0, 2, 3, 176, 1050, 57144, 744660, 41682304, 917959392, 54654865920, 1761420386880, 113338947830976, 4879197834619680, 341937322823859840, 18486700938579444480, 1415296984669095859200, 92017658919053166405120, 7695907229874069158658048
OFFSET
0,3
FORMULA
a(n) = (n!/(3*n+1)!) * Sum_{k=0..floor(n/2)} (3*n+k)! * |Stirling1(n-k,k)|/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (3*n+k)!*abs(stirling(n-k, k, 1))/(n-k)!)/(3*n+1)!;
CROSSREFS
Sequence in context: A371273 A328257 A042701 * A246488 A106715 A106817
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 15 2024
STATUS
approved