login
A368307
Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by two tiles that are both fixed under 180-degree rotation.
3
2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 48, 34, 8, 13, 78, 224, 224, 78, 13, 18, 237, 1224, 2302, 1224, 237, 18, 30, 687, 7696, 27012, 27012, 7696, 687, 30, 46, 2299, 50964, 353384, 675200, 353384, 50964, 2299, 46
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+--------------------------------------
1 | 2 3 4 6 8 13
2 | 3 7 13 34 78 237
3 | 4 13 48 224 1224 7696
4 | 6 34 224 2302 27012 353384
5 | 8 78 1224 27012 675200 17920860
6 | 13 237 7696 353384 17920860 954677952
MATHEMATICA
A368307[n_, m_] := 1/(2*n*m) (DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)* Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved