login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368307
Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by two tiles that are both fixed under 180-degree rotation.
3
2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 48, 34, 8, 13, 78, 224, 224, 78, 13, 18, 237, 1224, 2302, 1224, 237, 18, 30, 687, 7696, 27012, 27012, 7696, 687, 30, 46, 2299, 50964, 353384, 675200, 353384, 50964, 2299, 46
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+--------------------------------------
1 | 2 3 4 6 8 13
2 | 3 7 13 34 78 237
3 | 4 13 48 224 1224 7696
4 | 6 34 224 2302 27012 353384
5 | 8 78 1224 27012 675200 17920860
6 | 13 237 7696 353384 17920860 954677952
MATHEMATICA
A368307[n_, m_] := 1/(2*n*m) (DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)* Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved