login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368303
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal and vertical reflections by a tile that is fixed under 180-degree rotations but not horizontal or vertical reflections.
4
1, 2, 2, 2, 5, 2, 4, 8, 8, 4, 4, 22, 24, 22, 4, 8, 44, 120, 120, 44, 8, 9, 135, 612, 1203, 612, 135, 9, 18, 362, 3892, 13600, 13600, 3892, 362, 18, 23, 1211, 25482, 177342, 337600, 177342, 25482, 1211, 23, 44, 3914, 176654, 2404372, 8962618, 8962618, 2404372, 176654, 3914, 44
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+------------------------------------
1 | 1 2 2 4 4 8
2 | 2 5 8 22 44 135
3 | 2 8 24 120 612 3892
4 | 4 22 120 1203 13600 177342
5 | 4 44 612 13600 337600 8962618
6 | 8 135 3892 177342 8962618 477371760
MATHEMATICA
A368303[n_, m_]:=1/(4*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, Function[c, EulerPhi[c]EulerPhi[d]2^(m*n/LCM[c, d])]]]] + If[EvenQ[n], n/2*DivisorSum[m, EulerPhi[#](2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*2^(2m/#)*Boole[EvenQ[#]])&], n*DivisorSum[m, EulerPhi[#](2^(n*m/#))&, EvenQ]] + If[EvenQ[m], m/2*DivisorSum[n, EulerPhi[#](2^(n*m/LCM[2, #]) + 2^((m - 2)*n/LCM[2, #])*2^(2n/#)*Boole[EvenQ[#]])&], m*DivisorSum[n, EulerPhi[#](2^(m*n/#))&, EvenQ]] + n*m*2^((n*m)/2)*Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved