login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368263
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to 180-degree rotation by an asymmetric tile.
3
1, 3, 2, 4, 7, 2, 10, 20, 16, 4, 16, 76, 88, 43, 4, 36, 272, 720, 538, 120, 9, 64, 1072, 5472, 8356, 3280, 382, 10, 136, 4160, 43968, 131464, 105376, 22028, 1236, 22, 256, 16576, 349568, 2099728, 3355456, 1400536, 149800, 4243, 30
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+----------------------------------------
1 | 1 3 4 10 16 36
2 | 2 7 20 76 272 1072
3 | 2 16 88 720 5472 43968
4 | 4 43 538 8356 131464 2099728
5 | 4 120 3280 105376 3355456 107390592
6 | 9 382 22028 1400536 89489584 5726776672
MATHEMATICA
A368263[n_, m_] := 1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])
CROSSREFS
Sequence in context: A060006 A368254 A368261 * A123097 A368218 A352419
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved