login
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to 180-degree rotation by an asymmetric tile.
3

%I #9 Oct 19 2024 21:54:51

%S 1,3,2,4,7,2,10,20,16,4,16,76,88,43,4,36,272,720,538,120,9,64,1072,

%T 5472,8356,3280,382,10,136,4160,43968,131464,105376,22028,1236,22,256,

%U 16576,349568,2099728,3355456,1400536,149800,4243,30

%N Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to 180-degree rotation by an asymmetric tile.

%H Peter Kagey, <a href="/A368263/a368263.pdf">Illustration of T(2,3)=20</a>

%H Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv: 2311.13072 [math.CO], 2023.

%e Table begins:

%e n\k| 1 2 3 4 5 6

%e ---+----------------------------------------

%e 1 | 1 3 4 10 16 36

%e 2 | 2 7 20 76 272 1072

%e 3 | 2 16 88 720 5472 43968

%e 4 | 4 43 538 8356 131464 2099728

%e 5 | 4 120 3280 105376 3355456 107390592

%e 6 | 9 382 22028 1400536 89489584 5726776672

%t A368263[n_, m_] := 1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])

%K nonn,tabl

%O 1,2

%A _Peter Kagey_, Dec 21 2023