login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368139
Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by two tiles that are each fixed under both diagonal and antidiagonal reflection.
4
2, 6, 36, 1282, 340880, 477513804, 2872221202512, 72057600262282324, 7462505061854009276768, 3169126500572875969052992416, 5492677668532714149024993226980288, 38716571525226776302072008065489884436832, 1106936151351216411420647256070432280699273711360
OFFSET
1,1
LINKS
S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015).
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
MATHEMATICA
A368139[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 2^((n^2 + 1)/2), (7*2^(n^2/2 - 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 2^(n^2/(2 d)), 2^((n^2 + n)/(2d))]]])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 16 2023
STATUS
approved