login
A367981
Expansion of e.g.f. exp(-x) / (2 - exp(4*x)).
6
1, 3, 41, 699, 16145, 465843, 16129721, 651567339, 30080413985, 1562287110243, 90156154697801, 5722984840599579, 396313048731199025, 29731461242293159443, 2402032174787943537881, 207923994397338180409419, 19198138598327305954291265, 1883400035807194281432757443
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k>=0} (4*k-1)^n / 2^(k+1).
a(n) = (-1)^n + Sum_{k=1..n} binomial(n,k) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 4^k * A000670(k).
MATHEMATICA
nmax = 17; CoefficientList[Series[Exp[-x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (-1)^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!(Laplace( Exp(-x)/(2-Exp(4*x)) ))); // G. C. Greubel, Jun 11 2024
(SageMath)
def A367981_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(-x)/(2-exp(4*x)) ).egf_to_ogf().list()
A367981_list(40) # G. C. Greubel, Jun 11 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 07 2023
STATUS
approved