login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052841 E.g.f.: 1/(exp(x)*(2-exp(x))). 10
1, 0, 2, 6, 38, 270, 2342, 23646, 272918, 3543630, 51123782, 811316286, 14045783798, 263429174190, 5320671485222, 115141595488926, 2657827340990678, 65185383514567950, 1692767331628422662, 46400793659664205566, 1338843898122192101558, 40562412499252036940910 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Stirling transform of A005359(n)=[0,2,0,24,0,720,...] is a(n)=[0,2,6,38,270,...]. - Michael Somos, Mar 04 2004

Stirling transform of -(-1)^n*A052657(n-1)=[0,0,2,-6,48,-240,...] is a(n-1)=[0,0,2,6,38,270,...]. - Michael Somos, Mar 04 2004

Stirling transform of -(-1)^n*A052558(n-1)=[1,-1,4,-12,72,-360,...] is a(n-1)=[1,0,2,6,38,270,...]. - Michael Somos, Mar 04 2004

Stirling transform of 2*A052591(n)=[2,4,24,96,...] is a(n+1)=[2,6,38,270,...]. - Michael Somos, Mar 04 2004

Also the central moments of a Geometric(1/2) random variable (for example the number of coin tosses until the first head). - Svante Janson, Dec 10 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

C. G. Bower, Transforms (2)

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 808

Svante Janson, Euler-Frobenius numbers and rounding, preprint arXiv:1305.3512, 2013

FORMULA

O.g.f.: Sum_{n>=0} (2*n)! * x^(2*n) / Product_{k=1..2*n} (1-k*x). - Paul D. Hanna, Jul 20 2011

a( n) = (A000670(n) + (-1)^n)/2 = Sum_{k>=0} (k-1)^n/2^(k+1). - Vladeta Jovovic, Feb 02 2003

Also, a(n) = Sum[k=0..[n/2], (2k)!*Stirling2(n, 2k)]. - Ralf Stephan, May 23 2004

a(n) = D^n(1/(1-x^2)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A005649. - Peter Bala, Nov 25 2011

E.g.f.: 1/2/G(0) where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012

a(n) ~ n!/(4*(log(2))^(n+1)). - Vaclav Kotesovec, Aug 10 2013

MAPLE

spec := [S, {B=Prod(C, C), C=Set(Z, 1 <= card), S=Sequence(B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

P := proc(n, x) option remember; if n = 0 then 1 else

(n*x+2*(1-x))*P(n-1, x)+x*(1-x)*diff(P(n-1, x), x);

expand(%) fi end:

A052841 := n -> subs(x=2, P(n, x)):

seq(A052841(n), n=0..21);  # Peter Luschny, Mar 07 2014

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff(subst(1/(1-y^2), y, exp(x+x*O(x^n))-1), n))

(PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!*x^(2*m)/prod(k=1, 2*m, 1-k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */

CROSSREFS

Inverse binomial transform of A000670.

Sequence in context: A027322 A085447 A078673 * A197972 A068184 A067106

Adjacent sequences:  A052838 A052839 A052840 * A052842 A052843 A052844

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

Edited by N. J. A. Sloane, Sep 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 08:42 EST 2014. Contains 252241 sequences.