login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367854
Indices at which record high values occur in A367821.
1
1, 2, 4, 6, 72, 75, 152, 518, 631, 1585, 2512, 4217, 5275, 13895, 14678, 53367, 177828, 464159, 1154782, 2154435, 3162278, 4641589, 8483429, 8576959, 13894955, 15848932, 21544347, 68129207, 74989421, 100000001, 114504757, 170125428, 517947468, 1000000001
OFFSET
1,2
COMMENTS
Each term after a(1) = 1 is the smallest integer whose base-10 logarithm exceeds some ratio of integers N/D with D <= 21 = floor(1/(1 - log_10(9))); see Example section. - Jon E. Schoenfield, Dec 03 2023
EXAMPLE
From Jon E. Schoenfield, Dec 03 2023: (Start)
The following table illustrates how the base-10 logarithm of each term from a(2) through a(17) is slightly larger than a ratio of integers N/D with D <= 21.
.
n a(n) log_10(a(n)) N/D log_10(a(n))*D
-- ------ -------------- ----- --------------
2 2 0.301029995... 3/10 3.01029995...
3 4 0.602059991... 3/5 3.01029995...
4 6 0.778151250... 7/9 7.00336125...
5 72 1.857332496... 13/7 13.00132747...
6 75 1.875061263... 15/8 15.00049010...
7 152 2.181843587... 24/11 24.00027946...
8 518 2.714329759... 19/7 19.00030831...
9 631 2.800029359... 14/5 14.00014679...
10 1585 3.200029266... 16/5 16.00014633...
11 2512 3.400019635... 17/5 17.00009817...
12 4217 3.625003601... 29/8 29.00002880...
13 5275 3.722222463... 67/18 67.00000435...
14 13895 4.142858551... 29/7 29.00000985...
15 14678 4.166666883... 25/6 25.00000130...
16 53367 4.727272789... 52/11 52.00000068...
17 177828 5.250000144... 21/4 21.00000057...
...
E.g., log_10(a(17)) = log_10(177828) slightly exceeds 21/4; 10^(21/4) = 10^5 * 10^(1/4) = 100000 * 1.77827941..., so 177828^k is slightly farther above the nearest lower power of 10 than 177828^(k-4) is. This near-periodic behavior of the mantissas, with their slow upward creep at every 4th exponent, explains why none of the mantissas of 177828^k begin with 9 until k gets very large:
.
k 177828^k
------- ------------------
1 1.7782800e+0000005
2 3.1622799e+0000010
3 5.6234188e+0000015
4 1.0000013e+0000021
5 1.7782824e+0000026
6 3.1622840e+0000031
7 5.6234263e+0000036
8 1.0000027e+0000042
9 1.7782847e+0000047
10 3.1622882e+0000052
11 5.6234338e+0000057
...
15 5.6234412e+0000078
19 5.6234487e+0000099
23 5.6234562e+0000120
...
1417539 8.9999657e+7442079
1417543 8.9999776e+7442100
1417547 8.9999896e+7442121
1417551 9.0000015e+7442142
(End)
CROSSREFS
Cf. A367821.
Sequence in context: A348244 A066220 A348152 * A009257 A098757 A335709
KEYWORD
nonn,base
AUTHOR
William Hu, Dec 02 2023
EXTENSIONS
More terms from Jon E. Schoenfield, Dec 03 2023
STATUS
approved