login
A367856
Table T(n,k), read by downward antidiagonals: T(n,k) = floor((3*T(n,k-1)+2)/2) starting with T(n,0) = 3*n.
1
0, 1, 3, 2, 5, 6, 4, 8, 10, 9, 7, 13, 16, 14, 12, 11, 20, 25, 22, 19, 15, 17, 31, 38, 34, 29, 23, 18, 26, 47, 58, 52, 44, 35, 28, 21, 40, 71, 88, 79, 67, 53, 43, 32, 24, 61, 107, 133, 119, 101, 80, 65, 49, 37, 27, 92, 161, 200, 179, 152, 121, 98, 74, 56, 41, 30
OFFSET
0,3
COMMENTS
Permutation of nonnegative numbers.
FORMULA
T(n,0) = 3*n = A008585(n).
T(2*n,1) = 9*n+1 = A017173(n).
T(2*n+1,1) = 9*n+5 = A017221(n).
T(0,k) = A006999(k).
T(2^k+n, k) = 3^(k+1) + T(n, k).
EXAMPLE
Square array starts:
0, 1, 2, 4, 7, 11, 17, 26, 40, 61, ...
3, 5, 8, 13, 20, 31, 47, 71, 107, 161, ...
6, 10, 16, 25, 38, 58, 88, 133, 200, 301, ...
9, 14, 22, 34, 52, 79, 119, 179, 269, 404, ...
12, 19, 29, 44, 67, 101, 152, 229, 344, 517, ...
15, 23, 35, 53, 80, 121, 182, 274, 412, 619, ...
18, 28, 43, 65, 98, 148, 223, 335, 503, 755, ...
21, 32, 49, 74, 112, 169, 254, 382, 574, 862, ...
24, 37, 56, 85, 128, 193, 290, 436, 655, 983, ...
27, 41, 62, 94, 142, 214, 322, 484, 727, 1091, ...
...
MATHEMATICA
A367856[n_, k_] := A367856[n, k] = If[k == 0, 3*n, Floor[3*A367856[n, k-1]/2 + 1]];
Table[A367856[k, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 03 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 03 2023
EXTENSIONS
More terms from Paolo Xausa, Apr 03 2024
STATUS
approved