login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366813
a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+2,3).
4
1, 3, 11, 15, 36, 49, 85, 95, 176, 188, 287, 313, 456, 479, 726, 671, 970, 1024, 1331, 1300, 1866, 1741, 2301, 2265, 2961, 2824, 3830, 3431, 4496, 4514, 5457, 5023, 6842, 6174, 7890, 7444, 9140, 8553, 11126, 9780, 12342, 11998, 14191, 12885, 17106, 14999, 18425
OFFSET
1,2
LINKS
FORMULA
G.f.: -Sum_{k>=1} (-x)^k/(1-x^k)^4 = Sum_{k>=1} binomial(k+2,3) * x^k/(1+x^k).
MATHEMATICA
Table[DivisorSum[n, (-1)^(n/# - 1)*Binomial[# + 2, 3] &], {n, 56}] (* Michael De Vlieger, Oct 25 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^(n/d-1)*binomial(d+2, 3));
CROSSREFS
Partial sums give A366659.
Sequence in context: A146254 A039503 A276971 * A192161 A199262 A158507
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 24 2023
STATUS
approved