login
A366281
a(n) = largest exponent m for which a representation of the form A366275(n) = k^m exists (for some k). a(0) = 0 by convention.
3
0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 7, 6, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
0,3
FORMULA
a(n) = A052409(A366275(n)).
a(n) = A365805(A057889(n)).
PROG
(PARI)
A030101(n) = if(n<1, 0, subst(Polrev(binary(n)), x, 2));
A057889(n) = if(!n, n, A030101(n/(2^valuation(n, 2))) * (2^valuation(n, 2)));
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); };
CROSSREFS
Cf. A052409, A057889, A365805, A366275, A366278 [where a(n) = A052409(n)].
Sequence in context: A272729 A064034 A231635 * A365805 A334749 A266640
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 06 2023
STATUS
approved