login
A365404
The sum of the unitary divisors of the square root of the largest square dividing n.
2
1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1
OFFSET
1,4
COMMENTS
The number of these divisors is A323308(n).
The sum of the unitary divisors of the largest square dividing n is A365403(n).
LINKS
FORMULA
a(n) = A034448(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = 1 and a(p^e) = p^floor(e/2) + 1 for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-1).
Sum_{k=1..n} a(k) ~ (n/(2*zeta(3))) * (log(n) + 3*gamma - 1 - 4*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).
MATHEMATICA
f[p_, e_] := If[e == 1, 1, p^Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, 1 + f[i, 1]^(f[i, 2]\2))); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 03 2023
STATUS
approved