login
A363293
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x - A(-x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) - A(-x^4)^2/(4*x^4) + ... ).
1
1, 1, 2, 7, 26, 101, 412, 1756, 7692, 34350, 155980, 718312, 3345890, 15735091, 74613107, 356348561, 1712593184, 8276207120, 40192085383, 196045684833, 960042529894, 4718201036195, 23263440797758, 115042992517035, 570463195069614, 2835840294969867, 14129895469191476
OFFSET
1,3
MATHEMATICA
nmax = 27; A[_] = 0; Do[A[x_] = x Exp[-Sum[A[-(-x)^k]^2/(k (-x)^k), {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 26 2023
STATUS
approved