login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005754 Number of planted identity matched trees with n nodes.
(Formerly M1765)
3
1, 1, 2, 7, 24, 95, 388, 1650, 7183, 31965, 144502, 662241, 3068942, 14358678, 67729973, 321759461, 1538076291, 7392775328, 35707198905, 173221206284, 843634142771, 4123376617009, 20218897206392, 99436453714990, 490355165178472, 2424146632435852 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of rooted identity trees with n nodes and edges not attached to root are 2-colored or oriented.

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..400

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 430

R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.

R. Simon, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

a(n+1) is Weigh transform of A005753.

a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.05927840588836202377824646... . - Vaclav Kotesovec, Aug 25 2014

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(binomial(2*b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))

    end:

g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))

    end:

a:= n-> g((n-1)$2):

seq(a(n), n=1..30);  # Alois P. Heinz, Aug 01 2013

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1]; Table[a[n], {n, 1, 30}] // FullSimplify (* Jean-Fran├žois Alcover, Dec 02 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Cf. A005753, A102755, A246312.

Sequence in context: A150421 A150422 A137952 * A007162 A150423 A150424

Adjacent sequences:  A005751 A005752 A005753 * A005755 A005756 A005757

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms, formula and comment from Christian G. Bower, Dec 15 1999.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 09:55 EST 2019. Contains 329261 sequences. (Running on oeis4.)