The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005750 Number of planted matched trees with n nodes. (Formerly M2855) 13
 1, 1, 3, 10, 39, 160, 702, 3177, 14830, 70678, 342860, 1686486, 8393681, 42187148, 213828802, 1091711076, 5609297942, 28982708389, 150496728594, 784952565145, 4110491658233, 21602884608167, 113907912618599, 602414753753310, 3194684310627727, 16984594260224529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS When convolved with itself gives A000151. Number of rooted trees with n nodes and edges not attached to root are 2-colored or oriented. Also number of 2-trees (with 2n+1 cells) rooted at a symmetric end-edge. - Vladeta Jovovic, Aug 22 2001 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.5. F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.3). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..1325 (terms 1..500 from Alois P. Heinz) Loïc Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 [math.RA], 2018. T. Fowler, I. Gessel, G. Labelle, P. Leroux, The specification of 2-trees, Adv. Appl. Math. 28 (2) (2002) 145-168, Table 1. Andrew Gainer-Dewar, Gamma-Species and the Enumeration of k-Trees, Electronic Journal of Combinatorics, Volume 19 (2012), #P45. See page 20, line -3. - From N. J. A. Sloane, Dec 15 2012 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 428 R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104. R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy) N. J. A. Sloane, Transforms FORMULA a(n+1) is Euler transform of A000151. G.f.: A(x) = x*exp( A(x)^2/x + A(x^2)^2/(2x^2) + A(x^3)^2/(3x^3) + ... + A(x^n)^2/(n*x^n) + ...). - Paul D. Hanna G.f.: sqrt(B(x)/x) where B(x) is the g.f. of A000151. - Andrew Howroyd, May 13 2018 a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232..., c = 0.06185402386554883780092844840921448929211072031752507960399709674242810089... - Vaclav Kotesovec, Sep 12 2014, updated Dec 26 2020 EXAMPLE A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 160*x^6 + 702*x^7 + ... MAPLE A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(add((A(n-1)(x^k))^2/(k*x^k), k=1..2*n)), x=0, 2*n), polynom), x) fi end: a:= n-> coeff(series(A(n)(x), x=0, n+1), x, n): seq(a(n), n=1..23); # Alois P. Heinz, Aug 20 2008 MATHEMATICA max = 23; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[ Log[f[x]/x] - Sum[f[x^k]^2/(k*x^k), {k, 1, max}], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; s[2] = Solve[eqns[[1]], c[2]][[1]]; Do[eqns = Rest[eqns] /. s[k-1]; s[k] = Solve[ eqns[[1]], c[k]][[1]], {k, 3, max}]; Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 2, max}]] (* Jean-François Alcover, Oct 25 2011, after g.f. *) terms = 26; (* B = g.f. of A000151 *) B[_] = 0; Do[B[x_] = x*Exp[2*Sum[ B[x^k]/k, {k, 1, terms}]] + O[x]^terms // Normal, terms]; A[x_] = Exp[Sum[B[x^k]/k, {k, 1, terms}]] + O[x]^terms; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *) PROG (PARI) seq(N) = {my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(sqrt(Ser(A)))} \\ Andrew Howroyd, May 13 2018 CROSSREFS Cf. A000151, A058870, A058866, A054581, A245870. Sequence in context: A050385 A296195 A123768 * A151068 A151069 A151070 Adjacent sequences:  A005747 A005748 A005749 * A005751 A005752 A005753 KEYWORD nonn AUTHOR EXTENSIONS More terms, formula and comment from Christian G. Bower, Dec 15 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 17:01 EDT 2021. Contains 343050 sequences. (Running on oeis4.)