login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362910
Semiprimes p*q for which p <= q < p^3.
0
4, 6, 9, 10, 14, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 85, 91, 95, 115, 119, 121, 133, 143, 145, 155, 161, 169, 185, 187, 203, 205, 209, 215, 217, 221, 235, 247, 253, 259, 265, 287, 289, 295, 299, 301, 305, 319, 323, 329, 335, 341, 355, 361, 365
OFFSET
1,1
COMMENTS
The terms have already been considered as "strongly semiprimes".
LINKS
Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48, alternative link.
FORMULA
Limit_{n->oo} n*log(a(n))/a(n) = log(3).
MAPLE
with(numtheory):
q:= n-> bigomega(n)=2 and (s-> max(s)<min(s)^3)(factorset(n)):
select(q, [$4..500])[]; # Alois P. Heinz, May 10 2023
MATHEMATICA
Select[Range[335], (f = FactorInteger[#])[[;; , 2]] == {2} || (f[[;; , 2]] == {1, 1} && f[[2, 1]] < f[[1, 1]]^3) &] (* Amiram Eldar, May 10 2023 *)
PROG
(PARI) isok(n)=if(bigomega(n)<>2, 0, my(minfact=factor(n)[1, 1], maxfact=n/minfact); maxfact<minfact^3)
select(isok, [1..500])
CROSSREFS
Cf. A001248 (subsequence), A001358, A251728.
Sequence in context: A320969 A113433 A115654 * A036326 A078972 A115652
KEYWORD
nonn
AUTHOR
Alain Rocchelli, May 10 2023
STATUS
approved