login
A113433
Semi-Pierpont semiprimes: products of exactly two Pierpont primes A005109.
3
4, 6, 9, 10, 14, 15, 21, 25, 26, 34, 35, 38, 39, 49, 51, 57, 65, 74, 85, 91, 95, 111, 119, 133, 146, 169, 185, 194, 218, 219, 221, 247, 259, 289, 291, 323, 326, 327, 361, 365, 386, 481, 485, 489, 511, 514, 545, 579, 629, 679, 703, 763, 771, 815, 866, 949, 965
OFFSET
1,1
COMMENTS
Semiprime both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1. Not to be confused with A113432: Pierpont semiprimes [Semiprimes of the form (2^K)*(3^L)+1]. This terminology itself is by analogy to what Tomaszewski used for the Sophie Germain counterparts A111153 and A111206.
LINKS
Eric Weisstein's World of Mathematics, Pierpont Prime
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
{a(n)} = Semiprimes A001358 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {A005109(i)*A005109(j) for integers i and j not necessarily distinct}.
EXAMPLE
a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(1).
a(2) = 6 = 2*3 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(2).
a(3) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(2)*A005109(2).
a(4) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(1)*A005109(3).
a(5) = 14 = 2*7 = [(2^0)*(3^0)+1]*[(2^1)*(3^1)+1] = A005109(1)*A005109(4).
a(6) = 15 = 3*5 = [(2^1)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(2)*A005109(3).
MATHEMATICA
Select[Range[10^3], Plus @@ Last /@ FactorInteger[ # ] == 2 && And @@ (Max @@ First /@ FactorInteger[ # - 1] < 5 &) /@ First /@ FactorInteger[ # ] &] (* Ray Chandler, Jan 24 2006 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 01 2005
STATUS
approved