login
A359787
Parity of Dirichlet inverse of A075255, where A075255(n) = n - sopfr(n), where sopfr is the sum of prime factors (with repetition).
3
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1
OFFSET
1
COMMENTS
Note that here a(n) = 1 does not imply that A359768(n) = 1 also. The difference A359768(n) - a(n) can be -1, 0, or +1. This in contrast to sequences like A359774. See also A359816.
FORMULA
a(n) = A359788(n) mod 2.
PROG
(PARI) A359787(n) = (A359788(n)%2);
CROSSREFS
Cf. also A359764 [= a(A003961(n))], A359816.
Sequence in context: A181663 A359370 A359768 * A374119 A247223 A186741
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2023
STATUS
approved