The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075255 a(n) = n - (sum of primes factors of n (with repetition)). 9
 1, 0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 8, 0, 10, 0, 11, 11, 9, 0, 15, 15, 11, 18, 17, 0, 20, 0, 22, 19, 15, 23, 26, 0, 17, 23, 29, 0, 30, 0, 29, 34, 21, 0, 37, 35, 38, 31, 35, 0, 43, 39, 43, 35, 27, 0, 48, 0, 29, 50, 52, 47, 50, 0, 47, 43, 56, 0, 60, 0, 35, 62, 53, 59, 60 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 FORMULA a(n) = n - A001414(n). a(n) = 0 if n is prime or if n = 4. - Alonso del Arte, Jul 31 2018 EXAMPLE a(6) = 1 because 6 = 2 * 3, sopfr(6) = 2 + 3 = 5 and 6 - 5 = 1. MAPLE a:= n-> n-add(i[1]*i[2], i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Aug 07 2015 MATHEMATICA Join[{1}, Table[n - Total[Times@@@FactorInteger[n]], {n, 2, 80}]] (* Harvey P. Dale, Sep 20 2011 *) PROG (PARI) A075255(n)=n-sum(i=1, #n=factor(n)~, n[1, i]*n[2, i]) \\ M. F. Hasler, Oct 31 2008 (Magma) [n eq 1 select 1 else n-(&+[p[1]*p[2]: p in Factorization(n)]): n in [1..80]]; // G. C. Greubel, Jan 11 2019 (Sage) [n - sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 11 2019 (Python) from sympy import factorint def A075255(n): return n - sum(factorint(n, multiple=True)) # Chai Wah Wu, May 19 2022 CROSSREFS Cf. A001414, A008472, A075254, A075653. Cf. A145834 (= 0 followed by the nonzero terms of this sequence). - M. F. Hasler, Oct 31 2008 Sequence in context: A127572 A021815 A238525 * A135498 A104172 A091408 Adjacent sequences: A075252 A075253 A075254 * A075256 A075257 A075258 KEYWORD nonn AUTHOR Zak Seidov, Sep 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:43 EST 2022. Contains 358644 sequences. (Running on oeis4.)