login
A359501
Prime numbers p such that for some r >= 1 we have phi(p - r) + ... + phi(p - 1) = phi(p + 1) + ... + phi(p + r), where phi(i) = A000010(i).
0
5, 11, 13, 19, 31, 53, 67, 71, 89, 109, 127, 139, 173, 281, 313, 389, 421, 431, 523, 547, 569, 751, 911, 947, 1117, 1201, 1399, 1531, 1609, 1693, 1823, 1973, 2089, 2389, 2591, 2659, 2789, 3217, 3229, 3323, 3607, 3719, 3967, 4339, 4583, 4793, 5351, 5519, 5563, 5647, 5701
OFFSET
1,1
EXAMPLE
p = 5: phi(4) = phi(6) = 2, thus 5 is a term;
p = 19: phi(16) + phi(17) + phi(18) = phi(20) + phi(21) + phi(22) = 30, thus 19 is a term.
PROG
(PARI) isok(p) = if (isprime(p), my(k=primepi(p)); for (i=1, k-1, if (sum(j=1, i, eulerphi(p-j)) == sum(j=1, i, eulerphi(p+j)), return(1)); ); ); \\ Michel Marcus, Jan 03 2023
CROSSREFS
Sequence in context: A019395 A045448 A157750 * A045449 A296859 A313992
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jan 03 2023
EXTENSIONS
More terms from Michel Marcus, Jan 03 2023
STATUS
approved