login
A359499
a(n) = ((2*n+1)^16 - 1)/64.
3
0, 672605, 2384185791, 519264540150, 28953440450810, 717964529118315, 10397134518487185, 102631380558013916, 760331123057294820, 4506897086994080745, 22352635785031020755, 95822037745015603890, 363797880709171295166, 1246350673076132966615, 3910101151255427324805
OFFSET
0,2
COMMENTS
a(n) and A000217(n) have the same parity.
LINKS
Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
FORMULA
a(n) = A000217(n) * A219086(n) * A175110(n) * A359844(n) = A219086(n) * A175110(n) * A359844(n) = A359498(n) * A359499(n).
MATHEMATICA
Table[((2*n + 1)^16 - 1)/64, {n, 0, 15}] (* Paolo Xausa, Oct 04 2024 *)
PROG
(PARI) a(n) = ((2*n+1)^16 - 1)/64
(Python)
def A359499(n): return ((n<<1)+1)**16-1>>6 # Chai Wah Wu, Jan 15 2023
CROSSREFS
Cf. {((2*n+1)^2^k - 1)/2^(k+2)}: A000217 (k=1), A219086 (k=2), A359498 (k=3), this sequence (k=4).
Sequence in context: A084977 A049499 A068246 * A068248 A206324 A216000
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Jan 03 2023
STATUS
approved