login
A357845
Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).
2
1, 2, 11, 65, 79, 6, 55, 769, 10837, 30691, 33421, 32251, 34591, 16613, 34591, 1039561, 365327, 356647, 373573, 365513, 1504367, 4400261, 4569521, 4501817, 149447, 146327, 149603, 147263, 151631, 49937, 25651, 75913, 38639, 114097, 232289, 230129, 4470731, 4408487
OFFSET
1,2
LINKS
Olivier Bordellès and Benoit Cloitre, An alternating sum involving the reciprocal of certain multiplicative functions, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).
a(n)/A357846(n) ~ E * ((2/K-1)*(log(n) + gamma + F) + 2*log(2)*K'/K^2) + O(log(n)^(5/3)*log(log(n))^(4/3)/n), where E = Product_{p prime} alpha(p), F = Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p)), alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), K = A065442, K' = A065443 (Tóth, 2017).
EXAMPLE
Fractions begin with 1, 2/3, 11/12, 65/84, 79/84, 6/7, 55/56, 769/840, 10837/10920, 30691/32760, 33421/32760, 32251/32760, ...
MATHEMATICA
Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
PROG
(PARI) lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(numerator(s), ", "))};
(Python)
from fractions import Fraction
from sympy import divisor_sigma
def A357845(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1, n+1)).numerator # Chai Wah Wu, Oct 16 2022
CROSSREFS
Cf. A000203, A065442, A065443, A068762, A357846 (denominators).
Similar sequence: A104528, A212717, A357820.
Sequence in context: A161947 A349023 A001565 * A199412 A074613 A247109
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Oct 16 2022
STATUS
approved