login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065442 Decimal expansion of Erdos-Borwein constant Sum_{k=1..inf} 1/(2^k-1). 24
1, 6, 0, 6, 6, 9, 5, 1, 5, 2, 4, 1, 5, 2, 9, 1, 7, 6, 3, 7, 8, 3, 3, 0, 1, 5, 2, 3, 1, 9, 0, 9, 2, 4, 5, 8, 0, 4, 8, 0, 5, 7, 9, 6, 7, 1, 5, 0, 5, 7, 5, 6, 4, 3, 5, 7, 7, 8, 0, 7, 9, 5, 5, 3, 6, 9, 1, 4, 1, 8, 4, 2, 0, 7, 4, 3, 4, 8, 6, 6, 9, 0, 5, 6, 5, 7, 1, 1, 8, 0, 1, 6, 7, 0, 1, 5, 5, 5, 7, 5, 8, 9, 7, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also the decimal expansion of the (finite) value of the sum_{ k >= 1, k has no digit equal to 0 in base 2 } 1/k. - Robert G. Wilson v, Aug 03 2010

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..2000

Robert Baillie, Summing The Curious Series Of Kempner and Irwin,  arXiv:0806.4410v2 [math.CA], (2008)

Richard Crandall, The googol-th bit of the Erdos-Borwein constant, Integers, 12 (2012), A23.

S. R. Finch, Digital Search Tree Constants,

Eric Weisstein's Mathworld, Erdos-Borwein Constant, Tree Searching, Double Series, Irrational Number

FORMULA

Note Sum_{k=1..inf} d(k)/2^k = Sum_{k=1..inf} 1/(2^k-1).

Fast computation via Lambert series: 1.60669515... = sum(n>=1, x^(n^2)*(1+x^n)/(1-x^n) ) where x=1/2. [Joerg Arndt, May 24 2011]

Sum_{k=0..inf} 1/sigma(2^k) = 1.60669515... [Paolo P. Lava, Feb 10 2014]

EXAMPLE

1.60669515241529176378330152319092458048057967150575643577807955369...

MATHEMATICA

RealDigits[ Sum[1/(2^k - 1), {k, 350}], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2006 *)

(* first install irwinSums.m, see reference, then *) First@ RealDigits@ iSum[0, 0, 111, 2] (* Robert G. Wilson v, Aug 03 2010 *)

RealDigits[(Log[2] - 2 QPolyGamma[0, 1, 2])/Log[4], 10, 100][[1]] (* Fred Daniel Kline, May 23 2011 *)

x = 1/2; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and formula of Amarnath Murthy, see A073668 *)

PROG

(PARI) {A065442(n)= s=0; for(x=1, n, s=s+1.0/(2^x-1)); s }

(PARI) { default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065442.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009

CROSSREFS

See A038631 for continued fraction.

Sequence in context: A004016 A180318 A093577 * A198752 A141462 A055955

Adjacent sequences:  A065439 A065440 A065441 * A065443 A065444 A065445

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane, Nov 18 2001

EXTENSIONS

More terms from Randall L. Rathbun, Jan 16 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 25 21:44 EST 2014. Contains 250010 sequences.