

A198752


Decimal expansion of the least x>0 that gives the absolute minimum of f(x)+f(2x)+f(3x)+f(4x)+f(5x), where f(x)=sin(x)cos(x).


3



6, 0, 6, 9, 5, 0, 0, 3, 9, 3, 9, 6, 7, 0, 1, 1, 0, 2, 9, 2, 9, 3, 5, 7, 6, 2, 5, 3, 8, 5, 7, 0, 4, 5, 4, 2, 3, 8, 2, 3, 1, 7, 3, 5, 9, 9, 5, 5, 3, 8, 8, 9, 6, 1, 9, 4, 8, 0, 3, 1, 2, 1, 8, 0, 4, 9, 2, 7, 4, 6, 8, 9, 2, 5, 9, 6, 9, 2, 3, 5, 2, 9, 8, 8, 5, 8, 3, 4, 4, 7, 9, 4, 1, 8, 3, 5, 3, 0, 0, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A198745 for a guide to related sequences.


LINKS

Table of n, a(n) for n=1..100.


EXAMPLE

x=6.069500393967011029293576253857045423823...
min=6.682126364889810370734279330610851580...


MATHEMATICA

f[t_] := Sin[t]  Cos[t]
n = 5; s[t_] := Sum[f[k*t], {k, 1, n}]
x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
v = t /. Part[x, 2]
RealDigits[u] (* A198751 *)
RealDigits[v] (* A198752 *)
Plot[s[t], {t, 2 Pi, 2 Pi}, PlotRange > {7, 4.5}]


CROSSREFS

Cf. A198745.
Sequence in context: A004016 A093577 A065442 * A141462 A055955 A165071
Adjacent sequences: A198749 A198750 A198751 * A198753 A198754 A198755


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 29 2011


STATUS

approved



