login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357041
a(n) = Sum_{d|n} 2^(d-1) * binomial(d+n/d-1,d).
1
1, 4, 7, 18, 21, 66, 71, 196, 305, 648, 1035, 2526, 4109, 8774, 16875, 34288, 65553, 134860, 262163, 531506, 1051237, 2109594, 4194327, 8425348, 16779257, 33611984, 67123631, 134350206, 268435485, 537178750, 1073741855, 2148064768, 4295048345, 8591114580
OFFSET
1,2
FORMULA
G.f.: (1/2) * Sum_{k>0} (1/(1 - 2 * x^k)^k - 1).
G.f.: (1/2) * Sum_{k>0} (2 * x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = p + 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(#-1) * Binomial[# + n/# - 1, #] &]; Array[a, 50] (* Amiram Eldar, Jul 31 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, 2^(d-1)*binomial(d+n/d-1, d));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (1/(1-2*x^k)^k-1))/2)
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x)^k/(1-x^k)^(k+1))/2)
(Python)
from math import comb
from sympy import divisors
def A357041(n): return sum(comb(d+n//d-1, d)<<d-1 for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 27 2023
CROSSREFS
Cf. A360797.
Sequence in context: A292850 A080650 A276187 * A318025 A005509 A147366
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 26 2023
STATUS
approved