login
A360797
Expansion of Sum_{k>0} x^k / (1 - 2 * x^k)^(k+1).
2
1, 5, 13, 39, 81, 225, 449, 1115, 2345, 5373, 11265, 25483, 53249, 116497, 246405, 529195, 1114113, 2372741, 4980737, 10515511, 22025617, 46204953, 96468993, 201506607, 419432417, 872787997, 1811981789, 3758970975, 7784628225, 16108217801, 33285996545, 68723976779
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(n/d-1) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p * 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* Amiram Eldar, Jul 31 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-2*x^k)^(k+1)))
(PARI) a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d+n/d-1, d));
CROSSREFS
Cf. A360798.
Sequence in context: A146062 A201612 A129924 * A080143 A077919 A295913
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved